ijms-logo

Journal Browser

Journal Browser

Recent Trends in Experimental Models for Cancer Research

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 1985

Special Issue Editors


E-Mail Website
Guest Editor
1. UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
2. Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
3. UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
Interests: anticancer strategies; targeted therapy; cancer biomarkers; mitosis; apoptosis; drug discovery; bioactive compounds
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
2. Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Gandra, Portugal
3. i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
Interests: cancer resistance; pancreatic cancer; molecular biology; medical biotechnology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer remains a complex challenge worldwide, requiring innovative approaches to understand its complexities and develop effective treatments.

In this Special Issue, we aim to showcase the latest advancements and breakthroughs in experimental models for cancer research. Specifically, it refers to the progress and innovations made in the methodologies and systems used to study cancer in laboratory settings. Experimental models, both mammalian and non-mammalian, encompass a wide range of approaches, including cell culture, animal models, organoids, and computational models.

By continuously refining and enhancing experimental models for cancer research, researchers aim to better understand the mechanisms driving cancer initiation, progression, and treatment response. This knowledge contributes to the development of more effective therapeutic strategies, personalized medicine approaches, and, ultimately, improved outcomes for cancer patients.

We invite submissions of original research and review articles that contribute to the exploration of cutting-edge cancer research concerning available experimental models. Topics of interest may include improvements in the accuracy and relevance of models to human cancer, the development of novel techniques for studying specific aspects of cancer biology or therapy response, and the integration of new technologies such as genomic analysis, imaging modalities, and high-throughput screening methods.

Dr. Patrícia M. A. Silva
Dr. Cristina Pinto Ribeiro Xavier
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • experimental models
  • cancer research
  • cell culture
  • animal models
  • organoids
  • computational models

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 7992 KiB  
Article
The Potential of Single-Transcription Factor Gene Expression by RT-qPCR for Subtyping Small Cell Lung Cancer
by Albert Iñañez, Raúl del Rey-Vergara, Fabricio Quimis, Pedro Rocha, Miguel Galindo, Sílvia Menéndez, Laura Masfarré, Ignacio Sánchez, Marina Carpes, Carlos Martínez, Sandra Pérez-Buira, Federico Rojo, Ana Rovira and Edurne Arriola
Int. J. Mol. Sci. 2025, 26(3), 1293; https://doi.org/10.3390/ijms26031293 - 3 Feb 2025
Abstract
Complex RNA-seq signatures involving the transcription factors ASCL1, NEUROD1, and POU2F3 classify Small Cell Lung Cancer (SCLC) into four subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-I (triple negative or inflamed). Preliminary studies suggest that identifying these subtypes can guide targeted therapies and [...] Read more.
Complex RNA-seq signatures involving the transcription factors ASCL1, NEUROD1, and POU2F3 classify Small Cell Lung Cancer (SCLC) into four subtypes: SCLC-A, SCLC-N, SCLC-P, and SCLC-I (triple negative or inflamed). Preliminary studies suggest that identifying these subtypes can guide targeted therapies and potentially improve outcomes. This study aims to evaluate whether the expression levels of these three key transcription factors can effectively classify SCLC subtypes, comparable to the use of individual antibodies in immunohistochemical (IHC) analysis of formalin-fixed, paraffin-embedded (FFPE) tumor samples. We analyzed preclinical models of increasing complexity, including eleven human and five mouse SCLC cell lines, six patient-derived xenografts (PDXs), and two circulating tumor cell (CTC)-derived xenografts (CDXs) generated in our laboratory. RT-qPCR conditions were established to detect the expression levels of ASCL1, NEUROD1, and POU2F3. Additionally, protein-level analysis was performed using Western blot for cell lines and IHC for FFPE samples of PDX and CDX tumors, following our experience with patient tumor samples from the CANTABRICO trial (NCT04712903). We found that the analyzed SCLC cell line models predominantly expressed ASCL1, NEUROD1, and POU2F3, or showed no expression, as identified by RT-qPCR, consistently matching the previously assigned subtypes for each cell line. The classification of PDX and CDX models demonstrated consistency between RT-qPCR and IHC analyses of the transcription factors. Our results show that single-gene analysis by RT-qPCR from FFPE-extracted RNA simplifies SCLC subtype classification. This approach provides a cost-effective alternative to IHC staining or expensive multi-gene RNA sequencing panels, making SCLC subtyping more accessible for both preclinical research and clinical applications. Full article
(This article belongs to the Special Issue Recent Trends in Experimental Models for Cancer Research)
Show Figures

Figure 1

15 pages, 3653 KiB  
Article
Establishment and Characterization of Three Human Ocular Adnexal Sebaceous Carcinoma Cell Lines
by Su-Chan Lee, Cornelia Peterson, Kaixuan Wang, Lujain Alaali, James Eshleman, Nicholas R. Mahoney, Emily Li, Charles G. Eberhart and Ashley A. Campbell
Int. J. Mol. Sci. 2024, 25(18), 10183; https://doi.org/10.3390/ijms251810183 - 23 Sep 2024
Viewed by 1063
Abstract
Ocular adnexal sebaceous carcinoma (SebCA) represents one of the most clinically problematic periocular tumors, often requiring aggressive surgical resection. The pathobiology of this tumor remains poorly understood, and few models exist that are suitable for preclinical testing. The aim of this study was [...] Read more.
Ocular adnexal sebaceous carcinoma (SebCA) represents one of the most clinically problematic periocular tumors, often requiring aggressive surgical resection. The pathobiology of this tumor remains poorly understood, and few models exist that are suitable for preclinical testing. The aim of this study was to establish new cell lines to serve as models for pathobiological and drug testing. With patient consent, freshly resected tumor tissue was cultured using conditional reprogramming cell conditions. Standard techniques were used to characterize the cell lines in terms of overall growth, clonogenicity, apoptosis, and differentiation in vitro. Additional analyses including Western blotting, short tandem repeat (STR) profiling, and next-generation sequencing (NGS) were performed. Drug screening using mitomycin-C (MMC), 5-fluorouricil (5-FU), and 6-Diazo-5-oxo-L-norleucine (DON) were performed. JHH-SebCA01, JHH-SebCA02, and JHH-SebCA03 cell lines were established from two women and one man undergoing surgical resection of eyelid tumors. At passage 15, they each showed a doubling time of two to three days, and all could form colonies in anchorage-dependent conditions, but not in soft agar. The cells contained cytoplasmic vacuoles consistent with sebaceous differentiation, and adipophilin protein was present in all three lines. STR profiling confirmed that all lines were derived from their respective patients. NGS of the primary tumors and their matched cell lines identified numerous shared mutations, including alterations similar to those previously described in SebCA. Treatment with MMC or 5-FU resulted in dose-dependent growth inhibition and the induction of both apoptosis and differentiation. MYC protein was abundant in all three lines, and the glutamine metabolism inhibitor DON, previously shown to target high MYC tumors, slowed the growth of all our SebCA models. Ocular adnexal SebCA cell lines can be established using conditional reprogramming cell conditions, and our three new models are useful for testing therapies and interrogating the functional role of MYC and other possible molecular drivers. Current topical chemotherapies promote both apoptosis and differentiation in SebCA cells, and these tumors appear sensitive to inhibition or MYC-associated metabolic changes. Full article
(This article belongs to the Special Issue Recent Trends in Experimental Models for Cancer Research)
Show Figures

Figure 1

Back to TopTop