ijms-logo

Journal Browser

Journal Browser

Molecular Research in Bamboo, Tree, Grass, and Other Forest Products

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 30 April 2025 | Viewed by 1585

Special Issue Editor


E-Mail Website
Guest Editor
1. Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
2. Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, USA
Interests: plant biotechnology; molecular biology; plant gene function validation; bamboo sciences

Special Issue Information

Dear Colleagues,

In the era of rapid environmental changes and sustainable development, the importance of forest products, including bamboo, trees, and grass, has never been more evident. These versatile resources are crucial in supporting future societies, from providing renewable materials to enhancing ecological diversity. They are key players in the global effort towards sustainability, offering solutions that are both innovative and eco-friendly.

We are inviting the submission of original research articles, reviews, and case studies focusing on the molecular aspects of bamboo, trees, grass, and other forest products. We seek contributions that explore the genetic, biochemical, and molecular bases of their growth, development, and responses to environmental stress. Areas of interest include but are not limited to the following:

  • The molecular biology and genetics of bamboo, trees, grass, and other forest plants;
  • Sustainable cultivation practices and their molecular impacts;
  • The utilization of forest products for eco-friendly materials and energy;
  • Biochemical pathways involved in the production of valuable compounds;
  • Stress resistance and adaptation mechanisms at the molecular level.

Your research can contribute to advancing knowledge in these vital areas, helping to shape the future of forest product utilization and conservation. We welcome you to send your manuscript immediately or at any point up until the deadline, as papers will be published on an ongoing basis.

Dr. Huayu Sun
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bamboo
  • tree
  • grass
  • molecular biology
  • gene function

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4484 KiB  
Article
Identification of HXK Gene Family and Expression Analysis of Salt Tolerance in Buchloe dactyloides
by Haole Qi, Sining Wang, Yuehan Liu, Xueping Wang, Xiaoxia Li and Fengling Shi
Int. J. Mol. Sci. 2025, 26(2), 838; https://doi.org/10.3390/ijms26020838 - 20 Jan 2025
Viewed by 458
Abstract
Buchloe dactyloides is one of the typical ecological grass species, characterized by its strong salt tolerance. Hexokinase (HXK) plays a crucial role in plant growth, development, and resistance to abiotic stresses. To understand the function of HXKs in the salt tolerance of B. [...] Read more.
Buchloe dactyloides is one of the typical ecological grass species, characterized by its strong salt tolerance. Hexokinase (HXK) plays a crucial role in plant growth, development, and resistance to abiotic stresses. To understand the function of HXKs in the salt tolerance of B. dactyloides, this study identified and analyzed the HXK gene family members using the whole-genome data of B. dactyloides. Additionally, transcriptomic methods were employed to investigate the expression levels and stress response patterns of the HXK family genes under salt stress. The results showed that 25 HXK genes were identified in the B. dactyloides HXK gene family, which were classified into three subfamilies based on the phylogenetic tree. Members within the same subfamily exhibited similar gene structures and conserved motifs. The promoter regions of BdHXKs contained numerous cis-regulatory elements associated with plant hormone responses, plant growth and development, and resistance to abiotic stresses. Quantitative real-time PCR analysis provided preliminary evidence that the BdHXK5, BdHXK7, and BdHXK23 genes might play important roles in the salt tolerance regulation of B. dactyloides. These findings offer a theoretical foundation for further elucidating the functions and molecular regulatory mechanisms of BdHXKs under salt stress. This study has provided a theoretical basis for the breeding of new varieties of ecological restoration grasses with stronger salt tolerance and better growth and development. This is of great significance for the improvement and ecological restoration of saline–alkali land. Full article
(This article belongs to the Special Issue Molecular Research in Bamboo, Tree, Grass, and Other Forest Products)
Show Figures

Figure 1

25 pages, 21059 KiB  
Article
Cytological, Physiological, and Transcriptome Analysis of Leaf-Yellowing Mutant in Camellia chekiangoleosa
by Bin Huang, Wenyin Huang, Zhenyu Liu, Yixuan Peng, Yanshu Qu, Wencai Zhou, Jianjian Huang, Huili Shu and Qiang Wen
Int. J. Mol. Sci. 2025, 26(1), 132; https://doi.org/10.3390/ijms26010132 - 27 Dec 2024
Viewed by 424
Abstract
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. Camellia chekiangoleosa yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated [...] Read more.
Color variation in plant leaves has a significant impact on their photosynthesis and plant growth. Camellia chekiangoleosa yellow-leaf mutants are ideal materials for studying the mechanisms of pigment synthesis and photosynthesis, but their mechanism of leaf variation is not clear. We systematically elucidated the intrinsic causes of leaf yellowing in the new Camellia chekiangoleosa variety ‘Diecui Liuji’ in terms of changes in its cell structure, pigment content, and transcript levels. This study indicates that the incomplete structure of chloroplast-like vesicles, the decrease in blue-green chlorophyll a, and the increase in yellow-green chlorophyll b in yellowing leaves are the direct causes of yellowing-leaf formation. The high expression of genes that catalyze the degradation of chlorophyll a (PAO and RCCR) and its conversion to chlorophyll b (CAO) in yellowing leaves leads to a decrease in the chlorophyll a content, while the low expression of CLH genes is the main reason for the increase in the chlorophyll b content. We also found transcription factors such as ERF, E2F, WRKY, MYB, TPC, TGA, and NFYC may regulate their expression. RT-qPCR assays of 12 DEGs confirm the RNA-seq results. This study will provide a foundation for investigating the transcriptional and regulatory mechanisms of leaf color changes. Full article
(This article belongs to the Special Issue Molecular Research in Bamboo, Tree, Grass, and Other Forest Products)
Show Figures

Figure 1

Back to TopTop