ijms-logo

Journal Browser

Journal Browser

Modern Plant Cell Biotechnology: From Genes to Structure, 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 1707

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska St, 40-032 Katowice, Poland
Interests: cell differentiation; cell wall; auxin; somatic embryogenesis; nanoparticles; symplasmic communication
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032 Katowice, Poland
Interests: arabinogalactan proteins; cell cycle; cell wall; epigenetics; extensins; model plants; pectins; plant transformation; ploidy instability; proteomics; somatic embryogenesis; somaclonal variation; stem cells
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Modern plant cell biotechnology is a very diverse, multidisciplinary field of science. Biotechnological products are created by combining basic research in the field of biological sciences (biochemistry, molecular biology, genetics, cell biology, and immunology) and engineering sciences, and are used on a large scale in healthcare (medicine, the pharmaceutical industry, and diagnostics), agriculture, environmental protection, production (including food, chemicals, and cosmetics), and the development of alternative energy sources.

This Special Issue includes a wide range of topics linked with plant cell biotechnology, with a particular, but not exclusive, emphasis on the use of agriculturally important plants. Recent research related, for example, to genetic engineering techniques (the modification, editing, and regulation of gene expression) and other related topics are welcome.

As volume 1 of the “Modern Plant Cell Biotechnology: From Genes to Structure” Special Issue is successful, we are reopening it in the International Journal of Molecular Sciences (ISSN: 1422-0067, IF: 5.6, and JCR category Q1). This second Special Issue, “Modern Plant Cell Biotechnology: From Genes to Structure 2.0”, welcomes original manuscripts and review articles addressing this hot topic.

Prof. Dr. Ewa Kurczyńska
Dr. Alexander Betekhtin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetic engineering techniques
  • gene modification
  • gene editing
  • regulation of gene expression
  • plant cell biotechnology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 7276 KiB  
Article
Unraveling the Genetic Control of Pigment Accumulation in Physalis Fruits
by Wennan Zhao, Haiyan Wu, Xiaohan Gao, Huimei Cai, Jiahui Zhang, Chunbo Zhao, Weishu Chen, Hongyu Qiao and Jingying Zhang
Int. J. Mol. Sci. 2024, 25(18), 9852; https://doi.org/10.3390/ijms25189852 - 12 Sep 2024
Viewed by 562
Abstract
Physalis pubescens and Physalis alkekengi, members of the Physalis genus, are valued for their delicious and medicinal fruits as well as their different ripened fruit colors—golden for P. pubescens and scarlet for P. alkekengi. This study aimed to elucidate the pigment [...] Read more.
Physalis pubescens and Physalis alkekengi, members of the Physalis genus, are valued for their delicious and medicinal fruits as well as their different ripened fruit colors—golden for P. pubescens and scarlet for P. alkekengi. This study aimed to elucidate the pigment composition and genetic mechanisms during fruit maturation in these species. Fruit samples were collected at four development stages, analyzed using spectrophotometry and high-performance liquid chromatography (HPLC), and complemented with transcriptome sequencing to assess gene expression related to pigment biosynthesis. β-carotene was identified as the dominant pigment in P. pubescens, contrasting with P. alkekengi, which contained both lycopene and β-carotene. The carotenoid biosynthesis pathway was central to fruit pigmentation in both species. Key genes pf02G043370 and pf06G178980 in P. pubescens, and TRINITY_DN20150_c1_g3, TRINITY_DN10183_c0_g1, and TRINITY_DN23805_c0_g3 in P. alkekengi were associated with carotenoid production. Notably, the MYB-related and bHLH transcription factors (TFs) regulated zeta-carotene isomerase and β-hydroxylase activities in P. pubescens with the MYB-related TF showing dual regulatory roles. In P. alkekengi, six TF families—bHLH, HSF, WRKY, M-type MADS, AP2, and NAC—were implicated in controlling carotenoid synthesis enzymes. Our findings highlight the intricate regulatory network governing pigmentation and provide insights into Physalis germplasm’s genetic improvement and conservation. Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure, 2nd Edition)
Show Figures

Figure 1

13 pages, 2712 KiB  
Article
The REPLUMLESS Transcription Factor Controls the Expression of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 Gene Involved in Shoot and Fruit Patterning of Arabidopsis thaliana
by Erzsébet Kenesi, Orsolya Beöthy-Fehér, Réka Szőllősi, Ildikó Domonkos, Ildikó Valkai and Attila Fehér
Int. J. Mol. Sci. 2024, 25(14), 8001; https://doi.org/10.3390/ijms25148001 - 22 Jul 2024
Viewed by 717
Abstract
The promoter of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 (RLCK VI_A2) gene contains nine binding sites for the REPLUMLESS (RPL) transcription factor. In agreement, the expression of the kinase gene was strongly downregulated in the rpl-4 mutant. Comparing phenotypes of loss-of-function mutants, [...] Read more.
The promoter of the RECEPTOR-LIKE CYTOPLASMIC KINASE VI_A2 (RLCK VI_A2) gene contains nine binding sites for the REPLUMLESS (RPL) transcription factor. In agreement, the expression of the kinase gene was strongly downregulated in the rpl-4 mutant. Comparing phenotypes of loss-of-function mutants, it was revealed that both genes are involved in stem growth, phyllotaxis, organization of the vascular tissues, and the replum, highlighting potential functional interactions. The expression of the RLCKVI_A2 gene from the constitutive 35S promoter could not complement the rpl-4 phenotypes but exhibited a dominant positive effect on stem growth and affected vascular differentiation and organization. The results also indicated that the number of vascular bundles is regulated independently from stem thickness. Although our study cannot demonstrate a direct link between the RPL and RLVKVI_A2 genes, it highlights the significance of the proper developmental regulation of the RLCKVI_A2 promoter for balanced stem development. Full article
(This article belongs to the Special Issue Modern Plant Cell Biotechnology: From Genes to Structure, 2nd Edition)
Show Figures

Figure 1

Back to TopTop