ijms-logo

Journal Browser

Journal Browser

Nanomaterials for Tissue Engineering Applications 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Materials Science".

Deadline for manuscript submissions: closed (30 November 2021) | Viewed by 7326

Special Issue Editor

Special Issue Information

Dear Colleagues,

As nanotechnology applications in medicine have attracted worldwide interest, nanotechnological approaches to tissue engineering could also lead to many innovative solutions for repairing tissue damage. Employing three-dimensional scaffolds in tissue engineering is a key element among recent advancements in tissue engineering and biomaterial research. As scaffold materials, nanomaterials have gained popularity due to their many advantages over conventional techniques for tissue repair. Nanomaterials have shown superior performance over conventional materials for tissue engineering applications, such as in bone regeneration, cartilage repair, tendon/ligament regeneration, vascular tissue engineering, skin regeneration, nerve tissue engineering, and corneal regeneration. The ability of nanomaterials to mimic the native extracellular matrix and their ability to aid in cellular activity make these materials suitable candidates for scaffold fabrication. For instance, the high surface-to-volume ratio of nanofibers provides good cellular adhesion and rapid cell attachment on the material's surface. Interconnected pores within nanofiber membranes could facilitate nutrient and oxygen transfer. Indeed, recent nanotechnological developments have offered opportunities to greatly improve the properties of tissue-engineered scaffolds, and nanoscience approaches are suggesting some novel substitutes that could more precisely mimic the in vivo conditions of natural tissues.

This Special Issue will therefore focus on various tissue engineering approaches for the regeneration of different tissues/organs, with an emphasis on nanomaterials used in different aspects of tissue engineering and their role in tissue regeneration. 

Prof. Dr. Jyh-Ping Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • tissue engineering
  • scaffolds
  • biodegradable materials
  • nanostructured biomaterials
  • regenerative medicine
  • bone
  • cartilage repair
  • tendon
  • skin

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 8200 KiB  
Article
Novel Silver-Functionalized Poly(ε-Caprolactone)/Biphasic Calcium Phosphate Scaffolds Designed to Counteract Post-Surgical Infections in Orthopedic Applications
by Sara Comini, Rosaria Sparti, Bartolomeo Coppola, Mehdi Mohammadi, Sara Scutera, Francesca Menotti, Giuliana Banche, Anna Maria Cuffini, Paola Palmero and Valeria Allizond
Int. J. Mol. Sci. 2021, 22(18), 10176; https://doi.org/10.3390/ijms221810176 - 21 Sep 2021
Cited by 15 | Viewed by 2695
Abstract
In this study, we designed and developed novel poly(ε-caprolactone) (PCL)-based biomaterials, for use as bone scaffolds, through modification with both biphasic calcium phosphate (BCP), to impart bioactive/bioresorbable properties, and with silver nitrate, to provide antibacterial protection against Staphylococcus aureus, a microorganism involved [...] Read more.
In this study, we designed and developed novel poly(ε-caprolactone) (PCL)-based biomaterials, for use as bone scaffolds, through modification with both biphasic calcium phosphate (BCP), to impart bioactive/bioresorbable properties, and with silver nitrate, to provide antibacterial protection against Staphylococcus aureus, a microorganism involved in prosthetic joint infections (PJIs). Field emission scanning electron microscopy (FESEM) showed that the samples were characterized by square-shaped macropores, and energy dispersive X-ray spectroscopy analysis confirmed the presence of PCL and BCP phases, while inductively coupled plasma–mass spectrometry (ICP–MS) established the release of Ag+ in the medium (~0.15–0.8 wt% of initial Ag content). Adhesion assays revealed a significant (p < 0.0001) reduction in both adherent and planktonic staphylococci on the Ag-functionalized biomaterials, and the presence of an inhibition halo confirmed Ag release from enriched samples. To assess the potential outcome in promoting bone integration, preliminary tests on sarcoma osteogenic-2 (Saos-2) cells indicated PCL and BCP/PCL biocompatibility, but a reduction in viability was observed for Ag-added biomaterials. Due to their combined biodegrading and antimicrobial properties, the silver-enriched BCP/PCL-based scaffolds showed good potential for engineering of bone tissue and for reducing PJIs as a microbial anti-adhesive tool used in the delivery of targeted antimicrobial molecules, even if the amount of silver needs to be tuned to improve osteointegration. Full article
(This article belongs to the Special Issue Nanomaterials for Tissue Engineering Applications 2.0)
Show Figures

Figure 1

20 pages, 6385 KiB  
Article
Functional Hyaluronic Acid-Polylactic Acid/Silver Nanoparticles Core-Sheath Nanofiber Membranes for Prevention of Post-Operative Tendon Adhesion
by Chih-Hao Chen, Yuan-Hsun Cheng, Shih-Heng Chen, Andy Deng-Chi Chuang and Jyh-Ping Chen
Int. J. Mol. Sci. 2021, 22(16), 8781; https://doi.org/10.3390/ijms22168781 - 16 Aug 2021
Cited by 22 | Viewed by 3751
Abstract
In this study, we prepared core-sheath nanofiber membranes (CSNFMs) with silver nanoparticles (Ag NPs) embedding in the polylactic acid (PLA) nanofiber sheath and hyaluronic acid (HA) in the nanofiber core. The PLA/Ag NPs sheath provides mechanical support as well as anti-bacterial and anti-inflammatory [...] Read more.
In this study, we prepared core-sheath nanofiber membranes (CSNFMs) with silver nanoparticles (Ag NPs) embedding in the polylactic acid (PLA) nanofiber sheath and hyaluronic acid (HA) in the nanofiber core. The PLA/Ag NPs sheath provides mechanical support as well as anti-bacterial and anti-inflammatory properties. The controlled release of HA from the core could exert anti-adhesion effects to promote tendon sliding while reducing fibroblast attachment. From the microfibrous structural nature of CSNFMs, they function as barrier membranes to reduce fibroblast penetration without hampering nutrient transports to prevent post-operative peritendinous adhesion. As the anti-adhesion efficacy will depend on release rate of HA from the core as well as Ag NP from the sheath, we fabricated CSNFMs of comparable fiber diameter, but with thick (Tk) or thin (Tn) sheath. Similar CSNFMs with thick (Tk+) and thin (Tn+) sheath but with embedded Ag NPs in the sheath were also prepared. The physico-chemical properties of the barrier membranes were characterized in details, together with their biological response including cell penetration, cell attachment and proliferation, and cytotoxicity. Peritendinous anti-adhesion models in rabbits were used to test the efficacy of CSNFMs as anti-adhesion barriers, from gross observation, histology, and biomechanical tests. Overall, the CSNFM with thin-sheath and Ag NPs (Tn+) shows antibacterial activity with low cytotoxicity, prevents fibroblast penetration, and exerts the highest efficacy in reducing fibroblast attachment in vitro. From in vivo studies, the Tn+ membrane also shows significant improvement in preventing peritendinous adhesions as well as anti-inflammatory efficacy, compared with Tk and Tn CSNFMs and a commercial adhesion barrier film (SurgiWrap®) made from PLA. Full article
(This article belongs to the Special Issue Nanomaterials for Tissue Engineering Applications 2.0)
Show Figures

Figure 1

Back to TopTop