Monitoring and Management of Invasive Insect Pests

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: closed (31 May 2024) | Viewed by 12988

Special Issue Editors


E-Mail Website
Guest Editor
Department of Entomology, South China Agricultural University, Guangzhou 510642, China
Interests: invasive ants; tephritid fruit flies; ecological control; ant-hemipterans mutualism; interspecific competition; gut bacteria

E-Mail Website
Guest Editor
1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
2. National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572019, China
Interests: biological control; integrated pest management; invasive species; insect ecology; invasive insect-host plant-native insect interactions; insect behavior

E-Mail Website
Guest Editor
College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
Interests: integrated pest management; invasive species; insecticide resistance mechanisms; sterile insect technique

Special Issue Information

Dear Colleagues,

Biological invasion is a topic of global concern, and invasive insect pests are one of the most troubling groups of invasive species. These invasive insect pests cause serious economic losses and lead to grave impacts on agriculture and the ecological environment in invaded areas every year. Therefore, this Special Issue aims to publish the latest research results in the field of population monitoring and the management of invasive insect pests. The scope of this Special Issue includes, but is not be limited to, the following topics: molecular diagnostics, remote intelligent monitoring, quarantine treatment, early eradication, emergency response actions, biological control, and integrated pest management.

Prof. Dr. Yijuan Xu
Prof. Dr. Zhongshi Zhou
Prof. Dr. Xueqing Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • invasive insect pest
  • molecular diagnostics
  • remote intelligent monitoring
  • quarantine treatment
  • behavior ecology
  • emergency response actions
  • biological control
  • integrated pest management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 577 KiB  
Article
Dynamics of Bactrocera dorsalis Resistance to Seven Insecticides in South China
by Xinlian Li, Peizheng Li, Doudou Li, Xinyan Cai, Shiwei Gu, Ling Zeng, Daifeng Cheng and Yongyue Lu
Insects 2024, 15(9), 679; https://doi.org/10.3390/insects15090679 - 8 Sep 2024
Viewed by 815
Abstract
Bactrocera dorsalis is a highly invasive and destructive pest distributed worldwide. Chemical insecticides remain the primary measure for their control; however, this species has already developed resistance to several insecticides. In recent years, there have been several reports of monitoring B. dorsalis resistance [...] Read more.
Bactrocera dorsalis is a highly invasive and destructive pest distributed worldwide. Chemical insecticides remain the primary measure for their control; however, this species has already developed resistance to several insecticides. In recent years, there have been several reports of monitoring B. dorsalis resistance in China, but continuous monitoring results are lacking and do not even span a decade. In this study, we monitored the dynamics of resistance to seven insecticides among 11 geographically distinct Chinese populations of B. dorsalis (2010–2013; follow-up in 2023). The 11 populations were found to adapt rapidly to antibiotic insecticides (spinosad, emamectin benzoate, and avermectin), reaching high levels of insecticide resistance in several areas. Overall, a decreasing trend in resistance to organophosphorus insecticides (chlorpyrifos and trichlorfon) was observed, whereas pyrethroid (beta-cypermethrin and cyhalothrin) resistance trends were observed to both increase and decrease. The monitoring of field resistance among different B. dorsalis populations over the duration of this study is important for improving the efficiency and sustainability of agricultural pest management, and the results provide a scientific basis for the development of more effective resistance management strategies. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

13 pages, 2049 KiB  
Article
Functional Characterization of an Odorant Receptor Expressed in Newly Hatched Larvae of Fall Armyworm Spodoptera frugiperda
by Zhiqiang Wang, Xiaoqing Wang, Weihao Liu, Run Chen and Yang Liu
Insects 2024, 15(8), 564; https://doi.org/10.3390/insects15080564 - 26 Jul 2024
Viewed by 1118
Abstract
In the past decade, Spodoptera frugiperda has emerged as a significant invasive pest globally, posing a serious threat to agriculture due to its broad diet, migratory behavior, and ability to cause extensive plant damage. While extensive research has focused on the olfactory capabilities [...] Read more.
In the past decade, Spodoptera frugiperda has emerged as a significant invasive pest globally, posing a serious threat to agriculture due to its broad diet, migratory behavior, and ability to cause extensive plant damage. While extensive research has focused on the olfactory capabilities of adult S. frugiperda, understanding of the olfactory process in larvae remains limited, despite larvae playing a crucial role in crop damage. To address this gap, we identified an odorant receptor (OR), SfruOR40, expressed in the first-instar larvae through phylogenetic analysis. Using quantitative real-time PCR, we compared SfruOR40 expression levels in larvae and adults. We then characterized the function of SfruOR40 against 67 compounds using the Xenopus oocyte expression system and found that SfruOR40 responded to three plant volatiles. Further, behavioral experiments revealed a larval attraction to (−)-trans-Caryophyllene oxide. This study elucidates SfruOR40’s role in the olfactory recognition of newly hatched S. frugiperda larvae, expanding our knowledge of such mechanisms in Noctuid moths. Furthermore, it highlights the potential of plant-derived natural products for biological pest control from a behavioral ecology perspective. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

15 pages, 3160 KiB  
Article
The ZcVg3 Gene Regulates the Reproduction and Lifespan of Female Zeugodacus cucurbitae (Coquillett) Mediated by Short-Term High Temperatures
by Shuyan Yang, Sihua Peng, Aqiang Wang, Jingjing Jia, Qianxing Wu, Xiaofeng Yang and Shihao Zhou
Insects 2024, 15(7), 499; https://doi.org/10.3390/insects15070499 - 4 Jul 2024
Viewed by 1012
Abstract
Zeugodacus cucurbitae (Coquillett) is a significant pest affecting fruit and vegetables in tropical and subtropical regions, and its development and reproduction are enhanced after exposure to short-term high-temperature stress at 45 °C. Vitellogenin (Vg) is an essential precursor of yolk protein formation in [...] Read more.
Zeugodacus cucurbitae (Coquillett) is a significant pest affecting fruit and vegetables in tropical and subtropical regions, and its development and reproduction are enhanced after exposure to short-term high-temperature stress at 45 °C. Vitellogenin (Vg) is an essential precursor of yolk protein formation in eggs and plays a vital role in the ovarian development of insects. Interfering with the Z. cucurbitae vitellogenin receptor (ZcVgR) gene in short-term high-temperature conditions decreases the fecundity of female adults, while the transcription level of the ZcVg3 gene increases. To elucidate the reproductive function of the ZcVg3 gene and the synergistic relationship among the ZcVgs genes under short-term high temperatures, this study injected siRNA to interfere with the ZcVg3 gene after subjecting Z. cucurbitae to a 1 h treatment at 45 °C and 25 °C. The expression of the ZcVg3 gene was suppressed, leading to the upregulation of the ZcVg1 and ZcVg2 genes, and the expression of the ZcVgR gene was initially decreased and then increased. Silencing the ZcVg3 gene after a 1 h treatment at 45 °C resulted in a reduction of approximately 84.7% and 75.9% in the fecundity and spawning days of female adults compared to the control. The development rate of their ovaries and the ovarian diameter significantly decreased, and their lifespan was reduced by 71%. The ZcVg3 gene plays a crucial role in the reproduction of Z. cucurbitae in short-term high-temperature conditions. The results of this study provide potential targets for the development of RNAi-based techniques for the control of Z. cucurbitae. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

12 pages, 1632 KiB  
Article
Lethal, Sublethal, and Offspring Effects of Fluralaner and Dinotefuran on Three Species of Bactrocera Fruit Flies
by Doudou Li, Xinyan Cai, Yixiang Qi, Yongyue Lu and Xinlian Li
Insects 2024, 15(6), 440; https://doi.org/10.3390/insects15060440 - 11 Jun 2024
Cited by 3 | Viewed by 1161
Abstract
Fruit flies cause substantial economic damage, and their management relies primarily on chemical insecticides. However, pesticide resistance has been reported in several fruit fly species, the mitigation of which is crucial to enhancing fruit fly control. Here, we assess the toxicity of a [...] Read more.
Fruit flies cause substantial economic damage, and their management relies primarily on chemical insecticides. However, pesticide resistance has been reported in several fruit fly species, the mitigation of which is crucial to enhancing fruit fly control. Here, we assess the toxicity of a novel insecticide (fluralaner) and a common insecticide (dinotefuran) against three fruit fly species, Bactrocera dorsalis (Hendel), Bactrocera cucurbitae (Coquillett), and Bactrocera tau (Walker). Both pesticides exhibit robust lethal and sublethal effects against all three fruit fly species, with fluralaner being more potent. Fluralaner and dinotefuran suppress the reproductive capacities and survival rates of fruit flies. However, at the 50% lethal concentration, fluralaner stimulates the reproductive capacity of B. dorsalis and the survival rate of B. tau. Fluralaner also causes significant transgenerational effects, impacting the offspring hatching rate of B. cucurbitae and B. tau and reducing the proportion of female offspring. Thus, both pesticides exhibit high potential for controlling fruit flies. However, their application should be tailored according to species variations and the diverse effects they may induce. Collectively, the findings of this study outline the sublethal effects of two insecticides against fruit flies, helping to optimize their application to ensure the effective management of insecticide resistance. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

11 pages, 2522 KiB  
Article
Molecular Mechanism Underlying ROS-Mediated AKH Resistance to Imidacloprid in Whitefly
by Jingjing Li, Chaoqiang Zhu, Yunhao Xu, Haifang He, Chenchen Zhao and Fengming Yan
Insects 2024, 15(6), 436; https://doi.org/10.3390/insects15060436 - 8 Jun 2024
Viewed by 1184
Abstract
Synthetic insecticides used to control Bemisia tabaci include organophosphorus, pyrethroids, insect growth regulators, nicotinoids, and neonicotinoids. Among these, neonicotinoids have been used continuously, which has led to the emergence of high-level resistance to this class of chemical insecticides in the whitefly, making whitefly [...] Read more.
Synthetic insecticides used to control Bemisia tabaci include organophosphorus, pyrethroids, insect growth regulators, nicotinoids, and neonicotinoids. Among these, neonicotinoids have been used continuously, which has led to the emergence of high-level resistance to this class of chemical insecticides in the whitefly, making whitefly management difficult. The adipokinetic hormone gene (AKH) and reactive oxygen species (ROS) play roles in the development of insect resistance. Therefore, the roles of AKH and ROS in imidacloprid resistance in Bemisia tabaci Mediterranean (MED; formerly biotype Q) were evaluated in this study. The expression level of AKH in resistant B. tabaci MED was significantly lower than that in sensitive B. tabaci (MED) (p < 0.05). AKH expression showed a decreasing trend. After AKH silencing by RNAi, we found that ROS levels as well as the expression levels of the resistance gene CYP6CM1 and its upstream regulatory factors CREB, ERK, and P38 increased significantly (p < 0.05); additionally, whitefly resistance to imidacloprid increased and mortality decreased (p < 0.001). These results suggest that AKH regulates the expression of resistance genes via ROS in Bemisia tabaci. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

9 pages, 3726 KiB  
Communication
Influence of Ethanol Grade on Captures of Ambrosia Beetles in Tree Fruit Orchards, Ornamental Nurseries, and Lumber Yards
by Marek Dzurenko, Christopher M. Ranger, Martin Pavlík and Michael E. Reding
Insects 2024, 15(6), 408; https://doi.org/10.3390/insects15060408 - 3 Jun 2024
Viewed by 1218
Abstract
Ambrosia beetles, particularly invasive species within the tribe Xyleborini, such as Xylosandrus germanus (Blandford, 1894), pose significant threats to various ecosystems and managed habitats worldwide. Monitoring these invaders is vital for effective pest management, typically accomplished through ethanol-baited traps. We compared trap efficacy [...] Read more.
Ambrosia beetles, particularly invasive species within the tribe Xyleborini, such as Xylosandrus germanus (Blandford, 1894), pose significant threats to various ecosystems and managed habitats worldwide. Monitoring these invaders is vital for effective pest management, typically accomplished through ethanol-baited traps. We compared trap efficacy using denatured ethanol versus absolute ethanol in orchards, tree nurseries, and lumber yards in northeastern Ohio, USA, finding that absolute ethanol traps captured significantly more X. germanus. Analysis revealed acetone, ethanol, and methyl isobutyl ketone in the denatured ethanol, likely impacting trap efficacy. Our study underscores the importance of using pure denatured ethanol without acetone for effective monitoring, especially for X. germanus. Exotic xyleborines dominated trap captures across various habitats, emphasizing the need for tailored pest management strategies. Further research is warranted to explore the chemical ecology of ambrosia beetles and the influence of ethanol impurities on trap effectiveness. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

11 pages, 861 KiB  
Article
The Combination of Citrus Rootstock and Scion Cultivar Influences Trioza erytreae (Hemiptera: Triozidae) Survival, Preference Choice and Oviposition
by María Quintana-González de Chaves, Nancy Montero-Gomez, Carlos Álvarez-Acosta, Estrella Hernández-Suárez, Aurea Hervalejo, Juan M. Arjona-López and Francisco J. Arenas-Arenas
Insects 2024, 15(5), 363; https://doi.org/10.3390/insects15050363 - 16 May 2024
Viewed by 1105
Abstract
Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a citrus pest which produces gall symptoms on leaves and transmits bacteria associated with the citrus disease Huanglongbing, ‘Candidatus Liberibacter’ spp. In the present work, the biology and behaviour of T. erytreae were studied [...] Read more.
Trioza erytreae (Del Guercio, 1918) (Hemiptera: Triozidae) is a citrus pest which produces gall symptoms on leaves and transmits bacteria associated with the citrus disease Huanglongbing, ‘Candidatus Liberibacter’ spp. In the present work, the biology and behaviour of T. erytreae were studied in different rootstock–cultivar combinations. Six rootstocks were used, Flying dragon (FD), ‘Cleopatra’ mandarin (CL), Carrizo citrange (CC), Forner-Alcaide no.5 (FA5), Forner-Alcaide no.517 (FA517) and Citrus macrophylla (CM), and six scion cultivars: ‘Star Ruby’, ‘Clemenules’, ‘Navelina’, ‘Valencia Late’, ‘Fino 49’ and ‘Ortanique’. Survival and oviposition were evaluated in a no-choice trial, and preference in a choice trial, all of them under greenhouse conditions. Trioza erytreae did not show a clear settle preference for any citrus combination. However, it was able to lay more eggs in ‘Fino 49’ grafted on CC than on FD. In terms of survival, ‘Ortanique’ grafted onto FA5 was more suitable than when grafted onto FA517, and in the case of ‘Valencia Late’, when it was grafted onto CM rather than CC. Our results showed that T. erytreae behave differently depending on the citrus combination. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

16 pages, 10525 KiB  
Article
Exploring the Dynamic Invasion Pattern of the Black-Headed Fall Webworm in China: Susceptibility to Topography, Vegetation, and Human Activities
by Fan Shao, Jie Pan, Xinquan Ye and Gaosheng Liu
Insects 2024, 15(5), 349; https://doi.org/10.3390/insects15050349 - 13 May 2024
Viewed by 1539
Abstract
The fall webworm (FWW), H. cunea (Drury) (Lepidoptera: Erebidae: Arctiidae), is an extremely high-risk globally invasive pest. Understanding the invasion dynamics of invasive pests and identifying the critical factors that promote their spread is essential for devising practical and efficient strategies for their [...] Read more.
The fall webworm (FWW), H. cunea (Drury) (Lepidoptera: Erebidae: Arctiidae), is an extremely high-risk globally invasive pest. Understanding the invasion dynamics of invasive pests and identifying the critical factors that promote their spread is essential for devising practical and efficient strategies for their control and management. The invasion dynamics of the FWW and its influencing factors were analyzed using standard deviation ellipse and spatial autocorrelation methods. The analysis was based on statistical data on the occurrence of the FWW in China. The dissemination pattern of the FWW between 1979 and 2022 followed a sequence of “invasion-occurrence-transmission-outbreak”, spreading progressively from coastal to inland regions. Furthermore, areas with high nighttime light values, abundant ports, and non-forested areas with low vegetation cover at altitudes below 500 m were more likely to be inhabited by the black-headed FWW. The dynamic invasion pattern and the driving factors associated with the fall webworm (FWW) provide critical insights for future FWW management strategies. These strategies serve not only to regulate the dissemination of insects and diminish migratory tendencies but also to guarantee the implementation of efficient early detection systems and prompt response measures. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

21 pages, 21825 KiB  
Article
A Time-Frequency Domain Mixed Attention-Based Approach for Classifying Wood-Boring Insect Feeding Vibration Signals Using a Deep Learning Model
by Weizheng Jiang, Zhibo Chen and Haiyan Zhang
Insects 2024, 15(4), 282; https://doi.org/10.3390/insects15040282 - 16 Apr 2024
Cited by 2 | Viewed by 1361
Abstract
Wood borers, such as the emerald ash borer and holcocerus insularis staudinger, pose a significant threat to forest ecosystems, causing damage to trees and impacting biodiversity. This paper proposes a neural network for detecting and classifying wood borers based on their feeding vibration [...] Read more.
Wood borers, such as the emerald ash borer and holcocerus insularis staudinger, pose a significant threat to forest ecosystems, causing damage to trees and impacting biodiversity. This paper proposes a neural network for detecting and classifying wood borers based on their feeding vibration signals. We utilize piezoelectric ceramic sensors to collect drilling vibration signals and introduce a novel convolutional neural network (CNN) architecture named Residual Mixed Domain Attention Module Network (RMAMNet).The RMAMNet employs both channel-domain attention and time-domain attention mechanisms to enhance the network’s capability to learn meaningful features. The proposed system outperforms established networks, such as ResNet and VGG, achieving a recognition accuracy of 95.34% and an F1 score of 0.95. Our findings demonstrate that RMAMNet significantly improves the accuracy of wood borer classification, indicating its potential for effective pest monitoring and classification tasks. This study provides a new perspective and technical support for the automatic detection, classification, and early warning of wood-boring pests in forestry. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

14 pages, 3467 KiB  
Article
Hypervolume Niche Dynamics and Global Invasion Risk of Phenacoccus solenopsis under Climate Change
by Shaopeng Cui, Huisheng Zhang, Lirui Liu, Weiwei Lyu, Lin Xu, Zhiwei Zhang and Youzhi Han
Insects 2024, 15(4), 250; https://doi.org/10.3390/insects15040250 - 5 Apr 2024
Viewed by 1523
Abstract
As a globally invasive quarantine pest, the cotton mealybug, Phenacoccus solenopsis, is spreading rapidly, posing serious threats against agricultural and forestry production and biosecurity. In recent years, the niche conservatism hypothesis has been widely debated, which is particularly evident in invasive biology [...] Read more.
As a globally invasive quarantine pest, the cotton mealybug, Phenacoccus solenopsis, is spreading rapidly, posing serious threats against agricultural and forestry production and biosecurity. In recent years, the niche conservatism hypothesis has been widely debated, which is particularly evident in invasive biology research. Identifying the niche dynamics of P. solenopsis, as well as assessing its global invasion risk, is of both theoretical and practical importance. Based on 462 occurrence points and 19 bioclimatic variables, we used n-dimensional hypervolume analysis to quantify the multidimensional climatic niche of this pest in both its native and invasive ranges. We examined niche conservatism and further optimized the MaxEnt model parameters to predict the global invasion risk of P. solenopsis under both current and future climate conditions. Our findings indicated that the niche hypervolume of this pest in invasive ranges was significantly larger than that in its native ranges, with 99.45% of the niche differentiation contributed by niche expansion, with the remaining less than 1% explained by space replacement. Niche expansion was most evident in Oceania and Eurasia. The area under the receiver operating characteristic curve (0.83) and true skill statistic (0.62) indicated the model’s robust performance. The areas of suitable habitats for P. solenopsis are increasing significantly and the northward spread is obvious in future climate change scenarios. North Africa, northern China, Mediterranean regions, and northern Europe had an increased invasion risk of P. solenopsis. This study provided scientific support for the early warning and control of P. solenopsis. Full article
(This article belongs to the Special Issue Monitoring and Management of Invasive Insect Pests)
Show Figures

Figure 1

Back to TopTop