Insecticide Resistance: Challenge to Pest Management and Basic Research

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: closed (8 March 2024) | Viewed by 23651

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Bio-Interactions and Crop Health, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
Interests: insecticide resistance; insecticide toxicology; cytochrome P450s; target site insensitivity; insect growth regulator; novel insecticides targets
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Insecticide resistance is a serious problem affecting the efficacy and utility of compounds. It is exhausting our agricultural arsenal against pests. Scientists are engaged in investigating the mechanisms by which insects develop resistance to insecticides, such as target-protein resistance, metabolic resistance, cuticular resistance and increased transporter activity, which leads to the excretion of insecticide from the pest. This Special Issue will report recent, innovative tools and reviews on specific subject areas related to insecticide resistance mechanisms and insecticide resistance management strategies.

Dr. Shun-fan Wu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • insecticide resistance
  • insecticide toxicology
  • cytochrome P450s
  • target-site insensitivity
  • insect growth regulator
  • novel insecticides targets

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

12 pages, 1923 KiB  
Article
The L1014F Knockdown Resistance Mutation Is Not a Strong Correlate of Phenotypic Resistance to Pyrethroids in Florida Populations of Culex quinquefasciatus
by Alden S. Estep, Neil D. Sanscrainte, Jason Stuck, Isik Unlu, Agne Prasauskas, Stephanie J. Mundis, Nicholas Cotter, Ana L. Romero-Weaver, Troy J. Fedirko, Natalie L. Kendziorski, Kyle J. Kosinski, Daviela Ramirez and Eva A. Buckner
Insects 2024, 15(3), 197; https://doi.org/10.3390/insects15030197 - 15 Mar 2024
Viewed by 1517
Abstract
Culex quinquefasciatus is an important target for vector control because of its ability to transmit pathogens that cause disease. Most populations are resistant to pyrethroids and often to organophosphates, the two most common classes of active ingredients used by public health agencies. A [...] Read more.
Culex quinquefasciatus is an important target for vector control because of its ability to transmit pathogens that cause disease. Most populations are resistant to pyrethroids and often to organophosphates, the two most common classes of active ingredients used by public health agencies. A knockdown resistance (kdr) mutation, resulting in an amino acid change from a leucine to phenylalanine in the voltage gated sodium channel, is one mechanism contributing to the pyrethroid resistant phenotype. Enzymatic resistance has also been shown to play a very important role. Recent studies have shown strong resistance in populations even when kdr is relatively low, which indicates that factors other than kdr may be larger contributors to resistance. In this study, we examined, on a statewide scale (over 70 populations), the strength of the correlation between resistance in the CDC bottle bioassay and the kdr genotypes and allele frequencies. Spearman correlation analysis showed only moderate (−0.51) or weak (−0.29) correlation between the kdr genotype and permethrin or deltamethrin resistance, respectively. The frequency of the kdr allele was an even weaker correlate than genotype. These results indicate that assessing kdr in populations of Culex quinquefasciatus is not a good surrogate for phenotypic resistance testing. Full article
Show Figures

Figure 1

12 pages, 2181 KiB  
Article
Use of the Proboscis Extension Response Assay to Evaluate the Mechanism of House Fly Behavioral Resistance to Imidacloprid
by Sara D’Arco, Lara Maistrello, Caleb B. Hubbard, Amy C. Murillo and Alec C. Gerry
Insects 2024, 15(3), 168; https://doi.org/10.3390/insects15030168 - 1 Mar 2024
Cited by 1 | Viewed by 1847
Abstract
The house fly, Musca domestica L., is a significant human and livestock pest. Experiments used female adult house flies glued onto toothpicks for controlled exposure of their tarsi alone (tarsal assay) or their tarsi and proboscis (proboscis assay) with a sucrose solution containing [...] Read more.
The house fly, Musca domestica L., is a significant human and livestock pest. Experiments used female adult house flies glued onto toothpicks for controlled exposure of their tarsi alone (tarsal assay) or their tarsi and proboscis (proboscis assay) with a sucrose solution containing imidacloprid at either a low (10 µg/mL) or high (4000 µg/mL) concentration. Proboscis extension response (PER) assays were used to characterize the response of imidacloprid-susceptible and behaviorally resistant house fly strains to contact with sucrose solutions containing either a low or high concentration of imidacloprid. In each assay, 150 female flies from each fly strain were individually exposed to sucrose solutions containing either a low or high concentration of imidacloprid by deliberate contact of the fly tarsi to the test solution. The PER for each fly was subsequently recorded at 0, 2, and 10 s following the initial tarsal contact. A significant and rapid reduction in PER was observed only for the behaviorally resistant fly strain and only following contact by the flies’ proboscis with the sucrose solution containing the high imidacloprid concentration. The results suggest that chemoreceptors on the fly labellum or internally on the pharyngeal taste organs are involved in the detection of imidacloprid and discrimination of the concentration, resulting in an avoidance behavior (proboscis retraction) only when imidacloprid is at sufficient concentration. Further research is needed to identify the specific receptor(s) responsible for imidacloprid detection. Full article
Show Figures

Figure 1

16 pages, 15475 KiB  
Article
Resistance Mechanism of Plutella xylostella (L.) Associated with Amino Acid Substitutions in Acetylcholinesterase-1: Insights from Homology Modeling, Docking and Molecular Dynamic Simulation
by Maryam Zolfaghari, Yong Xiao, Fardous Mohammad Safiul Azam, Fei Yin, Zheng-Ke Peng and Zhen-Yu Li
Insects 2024, 15(3), 144; https://doi.org/10.3390/insects15030144 - 21 Feb 2024
Cited by 2 | Viewed by 1630
Abstract
Plutella xylostella, a destructive crucifer pest, can rapidly develop resistance to most classes of pesticides. This study investigated the molecular resistance mechanisms to chlorpyrifos, an organophosphate pesticide. Two P. xylostella genes, ace1 and ace2, were described. The nucleotide sequence results revealed no [...] Read more.
Plutella xylostella, a destructive crucifer pest, can rapidly develop resistance to most classes of pesticides. This study investigated the molecular resistance mechanisms to chlorpyrifos, an organophosphate pesticide. Two P. xylostella genes, ace1 and ace2, were described. The nucleotide sequence results revealed no variation in ace2, while the resistant strain (Kar-R) had four amino acid alterations in ace1, two of which (A298S and G324A) were previously shown to confer organophosphate resistance in P. xylostella. In the present study, the 3D model structures of both the wild-type (Gu-S) and mutant (Kar-R) of P. xylostella ace1 strains were studied through molecular dynamics (MDs) simulations and molecular docking. Molecular dynamics simulations of RMSD revealed less structural deviation in the ace1 mutant than in its wild-type counterpart. Higher flexibility in the 425–440 amino acid region in the mutant active site (Glu422 and Acyl pocket) increased the active site’s entropy, reducing the enzyme’s affinity for the inhibitors. Gene expression analysis revealed that the relative transcription levels of ace1 were significantly different in the Kar-R strain compared with the Gu-S strain. This study enhances the understanding of the mechanisms governing ace1′s resistance to insecticide and provides essential insights for new insecticides as well as valuable insights into environmentally conscious pest management techniques. Full article
Show Figures

Figure 1

12 pages, 1748 KiB  
Article
Widespread Resistance to Temephos in Aedes aegypti (Diptera: Culicidae) from Mexico
by Jesus A. Davila-Barboza, Selene M. Gutierrez-Rodriguez, Alan E. Juache-Villagrana, Beatriz Lopez-Monroy and Adriana E. Flores
Insects 2024, 15(2), 120; https://doi.org/10.3390/insects15020120 - 7 Feb 2024
Cited by 2 | Viewed by 2245
Abstract
Organic synthetic insecticides continue to be part of the arsenal for combating vector-borne diseases in Mexico. Larvicides are a fundamental part of the process in programs for mosquito control, temephos being one of the most widely used in Mexico. In the present study, [...] Read more.
Organic synthetic insecticides continue to be part of the arsenal for combating vector-borne diseases in Mexico. Larvicides are a fundamental part of the process in programs for mosquito control, temephos being one of the most widely used in Mexico. In the present study, we analyzed the frequency of temephos resistance in twenty-three Aedes aegypti populations using the discriminating concentration (DC) of 0.012 mg/L. We also tested 5× DC (0.6 mg/L) and 10× DC (0.12 mg/L) of temephos. The resistance distribution to temephos was interpolated to unsampled sites using the inverse distance weighting (IDW) method. The populations of Ae. aegypti showed a high frequency of resistance (1× DC) with mortality rates below 93% in 22 of the 23 populations analyzed. Moderate resistance intensity (5× DC) was found in 78% of the populations, and high intensity (10× DC) in 30%. Predicted mortality was below 60% in the populations of the Pacific Coast, along the Gulf of Mexico, and in the state of Coahuila in Northeastern Mexico in relation to 1× DC; the Pacific Coast and Northeast patterns hold for 5× and 10× DC. The results suggest the need for rotation of the larvicide to effectively control the larval populations of the vector in the country. Full article
Show Figures

Figure 1

11 pages, 1380 KiB  
Article
Resistance Monitoring of Nilaparvata lugens to Pymetrozine Based on Reproductive Behavior
by Xin-Yu Song, Yu-Xuan Peng, Yang Gao, Yan-Chao Zhang, Wen-Nan Ye, Pin-Xuan Lin, Cong-Fen Gao and Shun-Fan Wu
Insects 2023, 14(5), 428; https://doi.org/10.3390/insects14050428 - 29 Apr 2023
Cited by 4 | Viewed by 1756
Abstract
On the basis of the inhibition effects of pymetrozine on the reproductive behavior of N. lugens, we established a bioassay method to accurately evaluate the toxicity of pymetrozine in N. lugens and clarified the level of pymetrozine resistance of N. lugens in the [...] Read more.
On the basis of the inhibition effects of pymetrozine on the reproductive behavior of N. lugens, we established a bioassay method to accurately evaluate the toxicity of pymetrozine in N. lugens and clarified the level of pymetrozine resistance of N. lugens in the field. In this study, pymetrozine’s effects on the fecundity of N. lugens were evaluated using the topical application method and rice-seedling-dipping method. Moreover, the resistance of N. lugens to pymetrozine in a pymetrozine-resistant strain (Pym-R) and two field populations (YZ21 and QS21) was determined using the rice-seedling-dipping method and fecundity assay methods. The results showed that treatment of N. lugens third-instar nymphs with LC15, LC50, and LC85 doses of pymetrozine resulted in a significantly reduced fecundity of N. lugens. In addition, N. lugens adults treated with pymetrozine, using the rice-seedling-dipping and topical application method, also exhibited a significantly inhibited fecundity. Using the rice-stem-dipping method, pymetrozine resistance levels were shown to be high in Pym-R (194.6-fold), YZ21 (205.9-fold), and QS21 (212.8-fold), with LC50 values of 522.520 mg/L (Pym-R), 552.962 mg/L (YZ21), and 571.315 (QS21) mg/L. However, when using the rice-seedling-dipping or topical application fecundity assay method, Pym-R (EC50: 14.370 mg/L, RR = 12.4-fold; ED50: 0.560 ng/adult, RR = 10.8-fold), YZ21 (EC50: 12.890 mg/L, RR = 11.2-fold; ED50: 0.280 ng/adult; RR = 5.4-fold), and QS21 (EC50: 13.700 mg/L, RR = 11.9-fold) exhibited moderate or low levels of resistance to pymetrozine. Our studies show that pymetrozine can significantly inhibit the fecundity of N. lugens. The fecundity assay results showed that N. lugens only developed low to moderate levels of resistance to pymetrozine, indicating that pymetrozine can still achieve effective control on the next generation of N. lugens populations. Full article
Show Figures

Figure 1

16 pages, 857 KiB  
Article
Alpha-Cypermethrin Resistance in Musca domestica: Resistance Instability, Realized Heritability, Risk Assessment, and Insecticide Cross-Resistance
by Naeem Abbas and Abdulwahab M. Hafez
Insects 2023, 14(3), 233; https://doi.org/10.3390/insects14030233 - 26 Feb 2023
Cited by 8 | Viewed by 2495
Abstract
Musca domestica L., the common house fly, is a cosmopolitan carrier of human and livestock disease pathogens. The species exhibits resistance to many insecticides; therefore, effective M. domestica insecticide resistance management programs are required worldwide. In the present study, the development of alpha-cypermethrin [...] Read more.
Musca domestica L., the common house fly, is a cosmopolitan carrier of human and livestock disease pathogens. The species exhibits resistance to many insecticides; therefore, effective M. domestica insecticide resistance management programs are required worldwide. In the present study, the development of alpha-cypermethrin resistance, realized heritability (h2), instability of resistance trait (DR), and cross-resistance (CR) was investigated in an alpha-cypermethrin-selected M. domestica strain (Alpha-Sel) across 24 generations (Gs). Compared with an alpha-cypermethrin-unselected strain (Alpha-Unsel), resistance to alpha-cypermethrin increased from 46.4-fold (G5) to 474.2-fold (G24) in Alpha-Sel females and 41.0-fold (G5) to 253.2-fold (G24) in Alpha-Sel males. Alpha-cypermethrin resistance declined by between –0.10 (G5) and –0.05 (G24) in both M. domestica sexes without insecticide exposure for 24 generations. The h2 of alpha-cypermethrin resistance was 0.17 and 0.18 for males and females, respectively, in G1–G24. With selection intensities of 10–90%, the G values required for a tenfold increase in the LC50 of alpha-cypermethrin were 6.3–53.7, 4.1–33.8, and 3.0–24.7, given h2 values of 0.17, 0.27, and 0.37, respectively, and a constant slope of 2.1 for males and h2 values of 0.18, 0.28, and 0.38, respectively, and a constant slope of 2.0 for females. Compared with Alpha-Unsel, Alpha-Sel M. domestica exhibited moderate CR to bifenthrin (15.5-fold), deltamethrin (28.4-fold), and cyfluthrin (16.8-fold), low CR to two pyrethroids and five organophosphates, and no CR to insect growth regulators. The instability of resistance trait, low h2, and absent or low CR associated with alpha-cypermethrin resistance in M. domestica indicate resistance could be managed with rotational use of the insecticide. Full article
Show Figures

Figure 1

15 pages, 2353 KiB  
Article
Spatial Distribution of Pyrethroid Resistance and kdr Mutations in Aedes aegypti from La Guajira, Colombia
by Ronald Maestre-Serrano, Zulibeth Flórez-Rivadeneira, Juan M. Castro-Camacho, Eva Soto-Arenilla, Doris Gómez-Camargo, Paula Pareja-Loaiza, Gustavo Ponce-Garcia, Alan E. Juache-Villagrana and Adriana E. Flores
Insects 2023, 14(1), 31; https://doi.org/10.3390/insects14010031 - 29 Dec 2022
Cited by 3 | Viewed by 3122
Abstract
Dengue, chikungunya, and Zika are of great concern to the public health of Colombia. One of the main control strategies for these diseases is the application of insecticides directed at the Aedes aegypti vector. However, insecticide resistance has been increasingly recorded in the [...] Read more.
Dengue, chikungunya, and Zika are of great concern to the public health of Colombia. One of the main control strategies for these diseases is the application of insecticides directed at the Aedes aegypti vector. However, insecticide resistance has been increasingly recorded in the country, making control measures difficult. Here, we evaluated the resistance profiles for pyrethroids in populations of Ae. aegypti from La Guajira, Colombia. The frequency (diagnostic dose, DD) and intensity (2×, 5×, and 10× DD) of resistance to permethrin, deltamethrin, and lambda-cyhalothrin were determined in 15 populations of Ae. aegypti from La Guajira, Colombia, using the bottle bioassay. The kdr mutations V1016I, F1534C, and V410L, were identified, and their allele and genotype frequencies were calculated. Finally, the mortality values for the analyzed pyrethroids were interpolated following the IDW method for predicting pyrethroid resistance. The populations of Ae. aegypti showed a high frequency of resistance to permethrin with a low to moderate intensity, which was associated with the triple-resistant haplotype LL410/II1016/CC1534. They remain susceptible to deltamethrin and, in some populations, expressed the risk of developing resistance to lambda-cyhalothrin. Full article
Show Figures

Graphical abstract

15 pages, 1356 KiB  
Article
Analysis of the Feeding Behavior and Life Table of Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) under Sublethal Concentrations of Imidacloprid and Sulfoxaflor
by Yeolgyu Kang, Hyun-Na Koo, Hyun-Kyung Kim and Gil-Hah Kim
Insects 2022, 13(12), 1130; https://doi.org/10.3390/insects13121130 - 7 Dec 2022
Cited by 4 | Viewed by 2135
Abstract
The brown planthopper (BPH) Nilaparvata lugens and white-backed planthopper (WBPH) Sogatella furcifera are serious rice insect pests that cannot overwinter in Korea and migrate from southeast Asian countries and China. In this study, we investigated the sublethal effects of imidacloprid and sulfoxaflor on [...] Read more.
The brown planthopper (BPH) Nilaparvata lugens and white-backed planthopper (WBPH) Sogatella furcifera are serious rice insect pests that cannot overwinter in Korea and migrate from southeast Asian countries and China. In this study, we investigated the sublethal effects of imidacloprid and sulfoxaflor on the biological parameters and feeding behavior of planthoppers. These sublethal concentrations significantly decreased the net reproduction rate (R0), the intrinsic rate of increase (rm), and the mean generation time (T). For BPHs, the total durations of nonpenetration (NP) waveform by imidacloprid (LC10 = 164.74 and LC30 = 176.48 min) and sulfoxaflor (LC10 = 235.57 and LC30 = 226.93 min) were significantly different from those in the control group (52.73 min). In addition, on WBPHs, the total durations of NP waveform by imidacloprid (LC10 = 203.69 and LC30 = 169.9 min) and sulfoxaflor (LC10 = 134.02 and LC30 = 252.14 min) were significantly different from those in the control group (45.18 min). Moreover, the LC10 and LC30 of these insecticides significantly decreased the phloem feeding time. In conclusion, imidacloprid had a better effect on the inhibition of feeding of the WBPH, and sulfoxaflor showed a better effect on the inhibition of feeding of the BPH. Therefore, it is suggested that treatment with sublethal concentrations of the above insecticides will reduce the feeding of BPHs and WBPHs on rice phloem. Full article
Show Figures

Figure 1

12 pages, 1270 KiB  
Article
Insecticide Susceptibility Status of Anopheles and Aedes Mosquitoes in Malaria and Dengue Endemic Areas, Thai–Myanmar Border
by Kanchon Pusawang, Jetsumon Sattabongkot, Jassada Saingamsook, Daibin Zhong, Guiyun Yan, Pradya Somboon, Somsakul Pop Wongpalee, Liwang Cui, Atiporn Saeung and Patchara Sriwichai
Insects 2022, 13(11), 1035; https://doi.org/10.3390/insects13111035 - 9 Nov 2022
Cited by 1 | Viewed by 3001
Abstract
The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide–based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria [...] Read more.
The occurrence and spread of insecticide resistance has had a negative effect on the efficacy of insecticide–based tools and is distributed worldwide, including the Greater Mekong Subregion (GMS). This study aims to determine the insecticide susceptibility of malaria and dengue vectors in malaria and dengue hotspots on the Thai–Myanmar border. Mosquito larvae and pupae were obtained from water sources from December 2019 to April 2020 in Tha Song Yang District, Tak province, western Thailand. WHO bioassay susceptibility tests were conducted with three classes of insecticides to evaluate the knockdown and mortality rates of Anopheles and Aedes aegypti female adults. V1016G and F1534C kdr mutations in the voltage-gated sodium channel of Ae. aegypti were identified using a multiplex PCR. A total of 5764 female mosquitoes were bioassayed in this study, including Anopheles spp. (92.63%) and F1 Ae. aegypti (7.37%). After 24 h of observation, An. minimus s.l. (n = 3885) and An. maculatus s.l. (n = 1138) in Suan Oi (SO) and Tala Oka (TO) were susceptible to pyrethroids, organophosphates and carbamates (except bendiocarb) with 98–100% mortality (MR). Resistance to bendiocarb was detected with a mortality rate of 88.80%, 88.77%, and 89.92% for An. minimus s.l. (n = 125, 125) and An. maculatus s.l. (n = 66), respectively. The first generation of Ae. aegypti adult females were suspected of resistance to deltamethrin (n = 225, MR = 96.89%) and confirmed resistance to permethrin (n = 200, MR = 20.00%). V1016G and F1534C mutations were detected in three genotypes, heterozygote and homozygote forms. The correlation between the kdr alleles and deltamethrin resistance was significant. In conclusion, bendiocarb resistance was found in primary malaria vectors, An. minimus s.l. and An. maculatus s.l. F1 Ae. aegypti population was pyrethroids-resistant, associated with kdr alleles. Therefore, molecular analysis should be conducted to gain insights into the mechanism of insecticide resistance. Routine malaria vector control programmes, such as fogging implementation in hotspot villages to induce Aedes resistance available in peri–domestic sites, are questionable. Full article
Show Figures

Figure 1

Other

Jump to: Research

12 pages, 3795 KiB  
Brief Report
Immunodetection of Truncated Forms of the α6 Subunit of the nAChR in the Brain of Spinosad Resistant Ceratitis capitata Phenotypes
by Ana Guillem-Amat, Elena López-Errasquín, Irene García-Ricote, José Luis Barbero, Lucas Sánchez, Sergio Casas-Tintó and Félix Ortego
Insects 2023, 14(11), 857; https://doi.org/10.3390/insects14110857 - 4 Nov 2023
Cited by 2 | Viewed by 1610
Abstract
The α6 subunit of the nicotinic acetylcholine receptor (nAChR) has been proposed as the target for spinosad in insects. Point mutations that result in premature stop codons in the α6 gene of Ceratitis capitata flies have been previously associated with spinosad resistance, but [...] Read more.
The α6 subunit of the nicotinic acetylcholine receptor (nAChR) has been proposed as the target for spinosad in insects. Point mutations that result in premature stop codons in the α6 gene of Ceratitis capitata flies have been previously associated with spinosad resistance, but it is unknown if these transcripts are translated and if so, what is the location of the putative truncated proteins. In this work, we produced a specific antibody against C. capitata α6 (Ccα6) and validated it by ELISA, Western blotting and immunofluorescence assays in brain tissues. The antibody detects both wild-type and truncated forms of Ccα6 in vivo, and the protein is located in the cell membrane of the brain of wild-type spinosad sensitive flies. On the contrary, the shortened transcripts present in resistant flies generate putative truncated proteins that, for the most part, fail to reach their final destination in the membrane of the cells and remain in the cytoplasm. The differences observed in the locations of wild-type and truncated α6 proteins are proposed to determine the susceptibility or resistance to spinosad. Full article
Show Figures

Graphical abstract

Back to TopTop