Entomopathogenic Nematodes: Lethal Parasites of Insects

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: closed (1 December 2021) | Viewed by 15911

Special Issue Editors


E-Mail Website
Guest Editor
Department of Nematology, University of California, Riverside, CA 92521, USA
Interests: host–parasite interactions; entomopathogenic nematodes; innate immunity; molecular effectors

E-Mail Website
Guest Editor
CSIC-CAR-UR - Instituto de Ciencias de la Vid y del Vino (ICVV), Logrono, Spain
Interests: soil ecology; entomopathogenic nematodes; biological control; molecular ecology; multritrophic interactions

Special Issue Information

Dear Colleagues,

Entomopathogenic nematodes (EPNs) are members of a unique guild of parasites that kill insect hosts quickly and have a mutualistic association with bacteria. These nematodes have been studied for nearly 100 years. In addition to their role in biological control, EPNs have become a model system for the study of population ecology, behavioral ecology, host–parasite interactions, symbiosis, neurobiology, nematode physiology, and parasitism. This Special Issue will report recent discoveries and review key subject areas in EPN biology, their interactions with insects and other soil organisms, and their usefulness in biological control.

Dr. Adler R. Dillman
Dr. Raquel Campos-Herrera
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • entomopathogenic nematodes
  • host–parasite interactions
  • biological control
  • behavioral ecology
  • soil ecology
  • multitrophic interactions
  • parasitism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 1535 KiB  
Article
Comparative Screening of Mexican, Rwandan and Commercial Entomopathogenic Nematodes to Be Used against Invasive Fall Armyworm, Spodoptera frugiperda
by Patrick Fallet, Lara De Gianni, Ricardo A. R. Machado, Pamela Bruno, Julio S. Bernal, Patrick Karangwa, Joelle Kajuga, Bancy Waweru, Didace Bazagwira, Thomas Degen, Stefan Toepfer and Ted C. J. Turlings
Insects 2022, 13(2), 205; https://doi.org/10.3390/insects13020205 - 16 Feb 2022
Cited by 22 | Viewed by 4013
Abstract
The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are [...] Read more.
The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is an important pest of maize originating from the Americas. It recently invaded Africa and Asia, where it causes severe yield losses to maize. To fight this pest, tremendous quantities of synthetic insecticides are being used. As a safe and sustainable alternative, we explore the possibility to control FAW with entomopathogenic nematodes (EPN). We tested in the laboratory whether local EPNs, isolated in the invasive range of FAW, are as effective as EPNs from FAW native range or as commercially available EPNs. This work compared the virulence, killing speed and propagation capability of low doses of forty EPN strains, representing twelve species, after placing them with second-, third- and sixth-instar caterpillars as well as pupae. EPN isolated in the invasive range of FAW (Rwanda) were found to be as effective as commercial and EPNs from the native range of FAW (Mexico) at killing FAW caterpillars. In particular, the Rwandan Steinernema carpocapsae strain RW14-G-R3a-2 caused rapid 100% mortality of second- and third-instar and close to 75% of sixth-instar FAW caterpillars. EPN strains and concentrations used in this study were not effective in killing FAW pupae. Virulence varied greatly among EPN strains, underlining the importance of thorough EPN screenings. These findings will facilitate the development of local EPN-based biological control products for sustainable and environmentally friendly control of FAW in East Africa and beyond. Full article
(This article belongs to the Special Issue Entomopathogenic Nematodes: Lethal Parasites of Insects)
Show Figures

Figure 1

14 pages, 1490 KiB  
Article
Exploring the Use of Entomopathogenic Nematodes and the Natural Products Derived from Their Symbiotic Bacteria to Control the Grapevine Moth, Lobesia botrana (Lepidoptera: Tortricidae)
by Ignacio Vicente-Díez, Rubén Blanco-Pérez, Maryam Chelkha, Miguel Puelles, Alicia Pou and Raquel Campos-Herrera
Insects 2021, 12(11), 1033; https://doi.org/10.3390/insects12111033 - 17 Nov 2021
Cited by 25 | Viewed by 4249
Abstract
The European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae) is a relevant pest in the Palearctic region vineyards and is present in the Americas. Their management using biological control agents and environmentally friendly biotechnical tools would reduce intensive pesticide use. The entomopathogenic nematodes [...] Read more.
The European grapevine moth (EGVM) Lobesia botrana (Lepidoptera: Tortricidae) is a relevant pest in the Palearctic region vineyards and is present in the Americas. Their management using biological control agents and environmentally friendly biotechnical tools would reduce intensive pesticide use. The entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are well-known virulent agents against arthropod pests thanks to symbiotic bacteria in the genera Xenorhabdus and Photorhabdus (respectively) that produce natural products with insecticidal potential. Novel technological advances allow field applications of EPNs and those bioactive compounds as powerful bio-tools against aerial insect pests. This study aimed to determine the viability of four EPN species (Steinernema feltiae, S. carpocapsae, S. riojaense, and Heterorhabditis bacteriophora) as biological control agents against EGVM larval instars (L1, L3, and L5) and pupae. Additionally, the bioactive compounds from their four symbiotic bacteria (Xenorhabdus bovienii, X. nematophila, X. kozodoii, and Photorhabdus laumondii subsp. laumondii, respectively) were tested as unfiltered ferment (UF) and cell-free supernatant (CFS) against the EGVM larval instars L1 and L3. All of the EPN species showed the capability of killing EGVM during the larval and pupal stages, particularly S. carpocapsae (mortalities of ~50% for L1 and >75% for L3 and L5 in only two days), followed by efficacy by S. feltiae. Similarly, the bacterial bioactive compounds produced higher larval mortality at three days against L1 (>90%) than L3 (~50%), making the application of UF more virulent than the application of CFS. Our findings indicate that both steinernematid species and their symbiotic bacterial bioactive compounds could be considered for a novel agro-technological approach to control L. botrana in vineyards. Further research into co-formulation with adjuvants is required to expand their viability when implemented for aboveground grapevine application. Full article
(This article belongs to the Special Issue Entomopathogenic Nematodes: Lethal Parasites of Insects)
Show Figures

Figure 1

12 pages, 1492 KiB  
Article
Insecticidal Effect of Entomopathogenic Nematodes and the Cell-Free Supernatant from Their Symbiotic Bacteria against Philaenus spumarius (Hemiptera: Aphrophoridae) Nymphs
by Ignacio Vicente-Díez, Rubén Blanco-Pérez, María del Mar González-Trujillo, Alicia Pou and Raquel Campos-Herrera
Insects 2021, 12(5), 448; https://doi.org/10.3390/insects12050448 - 14 May 2021
Cited by 22 | Viewed by 3586
Abstract
The meadow spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the primary vector of Xylella fastidiosa (Proteobacteria: Xanthomonadaceae) in Europe, a pest–disease complex of economically relevant crops such as olives, almonds, and grapevine, managed mainly through the use of broad-spectrum pesticides. Providing environmentally sound alternatives [...] Read more.
The meadow spittlebug Philaenus spumarius (Hemiptera: Aphrophoridae) is the primary vector of Xylella fastidiosa (Proteobacteria: Xanthomonadaceae) in Europe, a pest–disease complex of economically relevant crops such as olives, almonds, and grapevine, managed mainly through the use of broad-spectrum pesticides. Providing environmentally sound alternatives to reduce the reliance on chemical control is a primary challenge in the control of P. spumarius and, hence, in the protection of crops against the expansion of its associated bacterial pathogen. Entomopathogenic nematodes (EPNs) are well-known biocontrol agents of soil-dwelling arthropods. Recent technological advances in field applications, including improvements in obtaining cell-free supernatant from their symbiotic bacteria, allow their successful implementation against aerial pests. Thus, this study aimed to evaluate, for the first time, the efficacy of EPN applications against nymphal instars of P. spumarius. We tested four EPN species and the cell-free supernatant of their corresponding symbiotic bacteria: Steinernema feltiaeXenorhabdus bovienii, S. carpocapsaeX. nematophila, S. riojaenseX. kozodoii, and Heterorhabditis bacteriophoraPhotorhabdus laumondii subsp. laumondii. First, we showed that 24 and 72 h exposure to the foam produced by P. spumarius nymphs did not affect S. feltiae virulence. The direct application of steinernematid EPNs provided promising results, reaching 90, 78, and 53% nymphal mortality rates after five days of exposure for S. carpocapsae, S. feltiae, and S. riojaense, respectively. Conversely, the application of the cell-free supernatant from P. laumondii resulted in nymphal mortalities of 64%, significantly higher than observed for Xenorhabdus species after five days of exposure. Overall, we demonstrated the great potential of the application of specific EPNs and cell-free supernatant of their symbiont bacteria against P. spumarius nymphs, introducing new opportunities to develop them as biopesticides for integrated management practices or organic vineyard production. Full article
(This article belongs to the Special Issue Entomopathogenic Nematodes: Lethal Parasites of Insects)
Show Figures

Figure 1

11 pages, 902 KiB  
Article
EPNs Exhibit Repulsion to Prenol in Pluronic Gel Assays
by Tiffany Baiocchi, Chunjie Li and Adler R. Dillman
Insects 2020, 11(8), 457; https://doi.org/10.3390/insects11080457 - 22 Jul 2020
Cited by 3 | Viewed by 2967
Abstract
Entomopathogenic nematodes (EPNs) are lethal parasites of insects that have become valuable in biological control and as a model system for studying host–parasite interactions, behavioral ecology, neurobiology, and genomics, among other fields. Their ability to locate hosts is paramount to successful infection and [...] Read more.
Entomopathogenic nematodes (EPNs) are lethal parasites of insects that have become valuable in biological control and as a model system for studying host–parasite interactions, behavioral ecology, neurobiology, and genomics, among other fields. Their ability to locate hosts is paramount to successful infection and host seeking has been extensively studied in many species in the lab. Here, we explored the usefulness of pluronic gel as a medium to assess EPN host seeking in the lab by characterizing the response of Steinernema carpocapsae, S. feltiae, S. glaseri, S. riobrave, Heterorhabditis bacteriophora, and H. indica to the odor prenol. We found that the infective juveniles (IJs) of these species were repelled by prenol in pluronic gel. We then evaluated how storing the IJs of S. carpocapsae, S. feltiae, and S. glaseri for different amounts of time affected their behavioral responses to prenol. The response of S. carpocapsae was significantly affected by the storage time, while the responses of S. feltiae and S. glaseri were unaffected. Our data support the notion that pluronic gel is a useful medium for studying EPN behavior and that the response of S. carpocapsae to informative odors is significantly affected by long-term storage. Full article
(This article belongs to the Special Issue Entomopathogenic Nematodes: Lethal Parasites of Insects)
Show Figures

Figure 1

Back to TopTop