Biomaterials for Wound Healing and Tissue Repair

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Biomaterials for Tissue Engineering and Regenerative Medicine".

Deadline for manuscript submissions: 20 December 2024 | Viewed by 1369

Special Issue Editor


E-Mail Website
Guest Editor
1. Head of Preclinical Research, Association of Dutch Burn Centres, Beverwijk, The Netherlands
2. Department Plastic, Reconstructive & Hand Surgery, Amsterdam UMC, Amsterdam, The Netherlands
Interests: tissue regeneration; burn wound healing; inflammation; wound models

Special Issue Information

Dear Colleagues,

Wound healing is a complex process that involves the intricate interplay between cells, tissues, and biomaterials. In the last few years biomaterials have been widely investigated for several biomedical applications, such as implants, wound dressings, scaffolds, drug delivery systems, and antibacterial agents for regenerative medicine. In order to take proper care and achieve faster healing, it is important to understand the healing process, learn about the barriers involved therein, and treatment options. For this issue, contributions highlighting the innovative techniques and devices making use of biomaterials for wound healing and repair are solicited. All aspects of wound healing and care including immune response, tissue engineering, skin grafting, and controlling infections are covered. Thus, this special issue will provide a platform for researchers, clinicians, and engineers to showcase their innovative approaches and novel biomaterials designed to accelerate wound healing, promote tissue regeneration, and enhance patient outcomes.

Topics of interest include but are not limited to:

  • Novel biomaterials for wound dressings
  • Advanced scaffolds for tissue engineering
  • Biocompatible and bioactive wound healing agents
  • Biofabrication techniques for wound healing applications
  • Immunomodulatory biomaterials for wound repair
  • Biomaterials for chronic wound management
  • Bio-inspired wound healing strategies
  • Controlled release of bioactive agents
  • In situ responsive biomaterials for wound treatment
  • Preclinical and clinical studies of biomaterials in wound healing

Dr. Bouke Boekema
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biocompatibility
  • scaffold design
  • immunomodulation
  • epithelialization
  • biodegradability and tissue integration
  • tailored approach

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 4268 KiB  
Article
In Vitro Wound-Healing Potential of Phenolic and Polysaccharide Extracts of Aloe vera Gel
by Andreea Iosageanu, Elena Mihai, Ana-Maria Seciu-Grama, Elena Utoiu, Alexandra Gaspar-Pintiliescu, Florentina Gatea, Anisoara Cimpean and Oana Craciunescu
J. Funct. Biomater. 2024, 15(9), 266; https://doi.org/10.3390/jfb15090266 - 13 Sep 2024
Viewed by 1148
Abstract
The present study aimed to conduct a comparative investigation of the biological properties of phenolic and polysaccharide extracts obtained using an ultrasound-assisted technique from Aloe vera gel and their effects on each stage of the wound healing process in in vitro experimental models. [...] Read more.
The present study aimed to conduct a comparative investigation of the biological properties of phenolic and polysaccharide extracts obtained using an ultrasound-assisted technique from Aloe vera gel and their effects on each stage of the wound healing process in in vitro experimental models. HPLC analysis showed that the phenolic extract contained aloin, ferulic, and caffeic acid, as well as quercetin dihydrate, as major compounds. Capillary zone electrophoresis indicated the prevalence of mannose and glucose in the polysaccharide extract. Cell culture testing revealed the anti-inflammatory properties of the phenolic extract at a concentration of 0.25 mg/mL through significant inhibition of pro-inflammatory cytokines—up to 28% TNF-α and 11% IL-8 secretion—in inflamed THP-1-derived macrophages, while a pro-inflammatory effect was observed at 0.5 mg/mL. The phenolic extract induced 18% stimulation of L929 fibroblast proliferation at a concentration of 0.5 mg/mL, enhanced the cell migration rate by 20%, and increased collagen type I synthesis by 18%. Moreover, the phenolic extract exhibited superior antioxidant properties by scavenging free DPPH (IC50 of 2.50 mg/mL) and ABTS (16.47 mM TE/g) radicals, and 46% inhibition of intracellular reactive oxygen species (ROS) production was achieved. The polysaccharide extract demonstrated a greater increase in collagen synthesis up to 25%, as well as antibacterial activity against Staphylococcus aureus with a bacteriostatic effect at 25 mg/mL and a bactericidal one at 50 mg/mL. All these findings indicate that the phenolic extract might be more beneficial in formulations intended for the initial phases of wound healing, such as inflammation and proliferation, while the polysaccharide extract could be more suitable for use during the remodeling stage. Moreover, they might be combined with other biomaterials, acting as efficient dressings with anti-inflammatory, antioxidant, and antibacterial properties for rapid recovery of chronic wounds. Full article
(This article belongs to the Special Issue Biomaterials for Wound Healing and Tissue Repair)
Show Figures

Figure 1

Back to TopTop