materials-logo

Journal Browser

Journal Browser

Thermal Stability and Fire Performance of Polymeric Materials

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Polymeric Materials".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 3073

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Chemistry, The Jan Kochanowski University, Żeromskiego 5, 25-369 Kielce, Poland
Interests: nanomaterials; flame retardancy of polymer composites; thermal properties; toxicity of thermal decomposition products; gas chromatography
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymers and materials made of them are commonly used in almost all fields of life. Despite numerous ecological restrictions and considerable amounts of process and post-consumer waste that is often difficult to recycle, the production and consumption of polymer materials have systematically increased around the world. The problem of the reduced flammability of plastic materials products has special importance, not only from economic reasons but also the protection of human life. During the combustion of plastics, a considerable amount toxic gaseous and smoke is formed.

Currently, smoke is primarily treated as a carrier of organic and carcinogenic compounds from the PCDDs/F and PAH groups.

Developing flame-retardant materials and understanding the phenomena that take place during the combustion of plastic materials very often require close collaboration between several fields of scientific expertise, such as macromolecular and physics chemistry, physics, mass and heat transfer, and so on.

This Special Issue, entitled “Thermal Stability and Fire Performance of Polymeric Materials”, aims to provide an excellent opportunity to publish the latest advances in these research fields. Full papers, review articles, and communications are all welcome.

Prof. Dr. Przemysław Rybiński
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymers
  • flame retardancy
  • thermal analysis
  • toxicity
  • fire hazard

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2745 KiB  
Article
The Flammability and Thermal Stability of Filling Epoxy Foam Plastics for Construction Purposes
by Svetlana Samchenko, Maxim Ushkov, Vladimir Erofeev, Valentin Ushkov and Irina Stepina
Materials 2024, 17(21), 5268; https://doi.org/10.3390/ma17215268 - 29 Oct 2024
Viewed by 533
Abstract
An effective type of polymer heat-insulating material (foams) based on reactive oligomers is casting epoxy foams with high technological and operational parameters. However, polyepoxide foams are highly flammable, which significantly restrains their application in the construction industry. The aim of this work was [...] Read more.
An effective type of polymer heat-insulating material (foams) based on reactive oligomers is casting epoxy foams with high technological and operational parameters. However, polyepoxide foams are highly flammable, which significantly restrains their application in the construction industry. The aim of this work was to develop effective methods for reducing the flammability of filling epoxy foams. In order to achieve the objective, the following objectives were addressed: determining the influence of the chemical nature and content of additive and reactive bromine- and phosphorus-containing compounds on the thermal stability, flammability and operational properties of filling epoxy foams, and the development of polyepoxy foams of reduced flammability with high-quality physical and mechanical characteristics. When estimating the flammability of epoxy foams, we used both state-approved methods and the methods described in scientific and technical literature. The thermal properties of epoxy foams were studied with the help of multimodular thermoanalytical complex DuPont-9900. The data on the influence of the apparent density of foams and oxygen concentration in the oxidant flow on the flame propagation speed on the horizontal surface of polyepoxy foams are presented. It was revealed that the chemical nature of amine hardeners does not affect the thermal stability and flammability of epoxy foams. It was established that phosphate plasticizers are ineffective flame retardants of foamed epoxy resin, and the chemical structure of additive organobromic flame retardants insignificantly affects their efficiency. It was shown that microencapsulated flame retardants are inferior in flame retardant efficiency to additive flame retardants. It was found that effective flame retardants for casting polyepoxy foams are phosphorus-containing oligoether methacrylate and epoxidized waste from the production of tetrabromodiphenylpropane. The results of this research will form the basis for the production of an experimental industrial batch of samples of pouring epoxy foams of reduced flammability. Full article
(This article belongs to the Special Issue Thermal Stability and Fire Performance of Polymeric Materials)
Show Figures

Figure 1

14 pages, 2693 KiB  
Article
Thermally Active Medium-Density Fiberboard (MDF) with the Addition of Phase Change Materials for Furniture and Interior Design
by Julia Dasiewicz, Anita Wronka, Aleksandra Jeżo and Grzegorz Kowaluk
Materials 2024, 17(16), 4001; https://doi.org/10.3390/ma17164001 - 12 Aug 2024
Viewed by 1278
Abstract
No matter where we reside, the issue of greenhouse gas emissions impacts us all. Their influence has a disastrous effect on the earth’s climate, producing global warming and many other irreversible environmental impacts, even though it is occasionally invisible to the independent eye. [...] Read more.
No matter where we reside, the issue of greenhouse gas emissions impacts us all. Their influence has a disastrous effect on the earth’s climate, producing global warming and many other irreversible environmental impacts, even though it is occasionally invisible to the independent eye. Phase change materials (PCMs) can store and release heat when it is abundant during the day (e.g., from solar radiation), for use at night, or on chilly days when buildings need to be heated. As a consequence, buildings use less energy to heat and cool, which lowers greenhouse gas emissions. Consequently, research on thermally active medium-density fiberboard (MDF) with PCMs is presented in this work. MDF is useful for interior design and furniture manufacturing. The boards were created using pine (Pinus sylvestris L.) and spruce (Picea abies L.) fibers, urea–formaldehyde resin, and PCM powder, with a phase transition temperature of 22 °C, a density of 785 kg m−3, a latent heat capacity of 160 kJ kg−1, a volumetric heat capacity of 126 MJ m−3, a specific heat capacity of 2.2 kJ kgK−1, a thermal conductivity of 0.18 W mK−1, and a maximum operating temperature of 200 °C. Before resination, the wood fibers were divided into two outer layers (16%) and an interior layer (68% by weight). Throughout the resination process, the PCM particles were solely integrated into the inner layer fibers. The mats were created by hand. A hydraulic press (AKE, Mariannelund, Sweden) was used to press the boards, and its operating parameters were 180 °C, 20 s/mm of nominal thickness, and 2.5 MPa for the maximum unit pressing pressure. Five variants of MDF with a PCM additive were developed: 0%, 5%, 10%, 30%, and 50%. According to the study, scores at the MOR, MOE, IB, and screw withdrawal resistance (SWR) tests decreased when PCM content was added, for example, MOE from 3176 to 1057 N mm−2, MOR from 41.2 to 11.5 N mm−2, and IB from 0.78 to 0.27 N mm−2. However, the results of the thickness swelling and water absorption tests indicate that the PCM particles do not exhibit a substantial capacity to absorb water, retaining the dimensional stability of the MDF boards. The thickness swelling positively decreased with the PCM content increase from 15.1 to 7.38% after 24 h of soaking. The panel’s thermal characteristics improved with the increasing PCM concentration, according to the data. The density profiles of all the variations under consideration had a somewhat U-shaped appearance; however, the version with a 50% PCM content had a flatter form and no obvious layer compaction on the panel surface. Therefore, certain mechanical and physical characteristics of the manufactured panels can be enhanced by a well-chosen PCM addition. Full article
(This article belongs to the Special Issue Thermal Stability and Fire Performance of Polymeric Materials)
Show Figures

Figure 1

24 pages, 4471 KiB  
Article
The Influence of Urtica dioica and Vitis vinifera Fibers on the Thermal Properties and Flammability of Polylactide Composites
by Tomasz M. Majka, Radosław Piech, Marcin Piechaczek and Krzysztof Adam Ostrowski
Materials 2024, 17(6), 1256; https://doi.org/10.3390/ma17061256 - 8 Mar 2024
Cited by 3 | Viewed by 945
Abstract
This study focuses on examining the influence of bast fibers on the flammability and thermal properties of the polylactide matrix (PLA). For this purpose, Urtica dioica and Vitis vinifera fibers were subjected to two types of modifications: mercerization in NaOH solution (M1 route) [...] Read more.
This study focuses on examining the influence of bast fibers on the flammability and thermal properties of the polylactide matrix (PLA). For this purpose, Urtica dioica and Vitis vinifera fibers were subjected to two types of modifications: mercerization in NaOH solution (M1 route) and encapsulation in an organic PLA solution (M2 route). In a further step, PLA composites containing 5, 10, and 15 wt% of unmodified and chemically treated fibers were obtained. The results of the tests show that only biocomposites containing mercerized fibers had a nearly 20% reduced flammability compared to that of PLA. Moreover, the biofiller obtained in this way belongs to the group of flame retardants that generate char residue during combustion, which was also confirmed by TGA tests. The M2 modification route allowed to achieve higher mass viscosity than the addition of unmodified and M1-modified fibers. The reason is that fibers additionally encapsulated in a polymer layer impede the mobility of the chain segments. The inferior homogenization of the M2-modified fibers in the PLA matrix translated into a longer combustion time and only a 15% reduction in flammability. Full article
(This article belongs to the Special Issue Thermal Stability and Fire Performance of Polymeric Materials)
Show Figures

Figure 1

Back to TopTop