materials-logo

Journal Browser

Journal Browser

Advanced Anode Materials for Alkali-Ion Batteries

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Energy Materials".

Deadline for manuscript submissions: closed (31 January 2025) | Viewed by 3833

Special Issue Editors


E-Mail Website
Guest Editor
Inorganic Chemistry Department, Universidad de Murcia, Murcia, Spain
Interests: materials for A-ion batteries (A = Li, Na, K); metallodrugs

E-Mail Website
Guest Editor
1. Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
2. Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karlsruhe, Germany
Interests: advanced materials (cathode, anode and polymer electrolyte) for beyond lithium technology; electrode–electrolyte interphases and degradation mechanisms

E-Mail Website
Guest Editor
3M Company, St. Paul, MN, USA
Interests: lithium-ion batteries; automotive electrification; electro and photocatalysis

Special Issue Information

Dear Colleagues,

Lithium-ion batteries (LIBs) are essential for powering many daily-used electronic devices, and keep gaining increasing interest because of their implementation in electric vehicles and their applicability in electric grid storage coupled with renewable energy sources. Although the electroactive materials that typically comprise Li-ion batteries are well-established, the significantly increased demand for LIBs raises concerns about the long-term availability, environmental implications, and cost of the critical raw materials used in LIB production. Additionally, finding more sustainable and low-cost options, such as the new emerging sodium-ion and potassium-ion batteries, has attracted significant attention. In this scenario, the incessant search for new materials and the improvement of the existing ones continues in order to meet the requirements and specifications for new applications.

This Special Issue aims to gather recent research and advances on anode materials for alkali-ion batteries, tackling topics from lithium-ion batteries to the currently available commercial sodium-ion batteries, as well as emerging potassium-ion batteries. Contributions to this Special Issue will be of great interest to researchers working in materials, batteries and energy storage. Consequently, we welcome research works from these areas of expertise.

Dr. Maria Jose Piernas Muñoz
Dr. Maider Zarrabeitia
Dr. Linghong Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • batteries
  • alkali-ion
  • lithium-ion
  • sodium-ion
  • potassium-ion
  • anodes
  • materials
  • sustainable

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 13870 KiB  
Article
Facile One-Pot Synthesis of Fe3O4 Nanoparticles Composited with Reduced Graphene Oxide as Fast-Chargeable Anode Material for Lithium-Ion Batteries
by Honggyu Seong, Taejung Jung, Sanghyeon Kim and Jaewon Choi
Materials 2024, 17(20), 5059; https://doi.org/10.3390/ma17205059 - 17 Oct 2024
Viewed by 1342
Abstract
To address the rapidly growing demand for high performance of lithium-ion batteries (LIBs), the development of high-capacity anode materials should focus on the practical perspective of a facile synthetic process. In this work, iron oxide nanoparticles (Fe3O4 NPs) in situ [...] Read more.
To address the rapidly growing demand for high performance of lithium-ion batteries (LIBs), the development of high-capacity anode materials should focus on the practical perspective of a facile synthetic process. In this work, iron oxide nanoparticles (Fe3O4 NPs) in situ grown on the surface of reduced graphene oxide (rGO), denoted as Fe3O4 NPs@rGO, were prepared through a facile one-pot synthesis under the wet-colloidal conditions. The synthesized Fe3O4 NPs showed that uniform Fe3O4 NPs, with a size of around 9 nm, were distributed on the rGO surfaces. When applied as an anode material for LIBs, the Fe3O4 NPs@rGO anode revealed a high reversible capacity of 1191 mAh g−1 at 1.0 A g−1 after 200 cycles. It also exhibited excellent rate performance, achieving 608 mAh g−1 at a current density of 5.0 A g−1 over 500 cycles, with improved electronic and ionic conductivities due to the rGO template. This suggested that practically available anode materials can be developed through our one-pot synthesis by in situ growing the Fe3O4 NPs. Full article
(This article belongs to the Special Issue Advanced Anode Materials for Alkali-Ion Batteries)
Show Figures

Figure 1

18 pages, 8433 KiB  
Article
Towards More Sustainable Schiff Base Carboxylate Anodes for Sodium-Ion Batteries
by Irene Gómez-Berenguer, Bernardo Herradón, José Manuel Amarilla and Elizabeth Castillo-Martínez
Materials 2024, 17(19), 4918; https://doi.org/10.3390/ma17194918 - 8 Oct 2024
Viewed by 874
Abstract
Bismine sodium salt (BSNa), a Schiff base with two sodium carboxylates, has shown promising electrochemical performance as an anode material. However, its synthesis involves toxic reagents and generates impurities, requiring significant solvent use for purification. This study introduces a novel synthetic method using [...] Read more.
Bismine sodium salt (BSNa), a Schiff base with two sodium carboxylates, has shown promising electrochemical performance as an anode material. However, its synthesis involves toxic reagents and generates impurities, requiring significant solvent use for purification. This study introduces a novel synthetic method using sodium hydroxide as the sole reagent, which acts as both a base and Na source in the ion exchange step. With this procedure, we reduce the amounts of chemicals, diminish toxicity, improve the purity of the target compound, and use less solvent while maintaining comparable electrochemical performance. Additionally, the procedure is carried out under anhydrous conditions that avoid the undesirable hydrolysis of the imine linkages. In a previous report, the processing of the composite electrode was not established. In this article, we address this issue; the electrochemical performance, specifically the rate capability, is enhanced by processing the electrodes in laminate form rather than powder. As alternative to N-methyl-2-pyrrolidone (NMP), a common but disadvantageous solvent in laminate processing, other solvents were explored by testing acetone (DMK), methylisopropylketone (MIPK), and a DMK-NMP mixture. The remarkable electrochemical performance (specific capacity of 260–280 mAh/g, and capacity retentions higher than 84% at 1C (260 mA/g) remained consistent across these solvents. Furthermore, we investigated replacing copper with aluminum as the current collector to reduce costs and increase the energy density of the battery. While aluminum performed comparably to copper at low specific currents C/10 (26 mA/g), it showed a significant shift in the redox process potentials at higher specific currents. Full article
(This article belongs to the Special Issue Advanced Anode Materials for Alkali-Ion Batteries)
Show Figures

Figure 1

Review

Jump to: Research

40 pages, 9273 KiB  
Review
Revisiting Intercalation Anode Materials for Potassium-Ion Batteries
by María José Piernas-Muñoz and Maider Zarrabeitia
Materials 2025, 18(1), 190; https://doi.org/10.3390/ma18010190 - 4 Jan 2025
Viewed by 987
Abstract
Potassium-ion batteries (KIBs) have attracted significant attention in recent years as a result of the urgent necessity to develop sustainable, low-cost batteries based on non-critical raw materials that are competitive with market-available lithium-ion batteries. KIBs are excellent candidates, as they offer the possibility [...] Read more.
Potassium-ion batteries (KIBs) have attracted significant attention in recent years as a result of the urgent necessity to develop sustainable, low-cost batteries based on non-critical raw materials that are competitive with market-available lithium-ion batteries. KIBs are excellent candidates, as they offer the possibility of providing high power and energy densities due to their faster K+ diffusion and very close reduction potential compared with Li+/Li. However, research on KIBs is still in its infancy, and hence, more investigation is required both at the materials level and at the device level. In this work, we focus on recent strategies to enhance the electrochemical properties of intercalation anode materials, i.e., carbon-, titanium-, and vanadium-based compounds. Hitherto, the most promising anode materials are those carbon-based, such as graphite, soft, or hard carbon, each with its advantages and disadvantages. Although a wide variety of strategies have been reported with excellent results, there is still a need to improve the standardization of the best carbon properties, electrode formulation, and electrolyte composition, given the impossibility of a direct comparison. Therefore, additional effort should be made to understand what are the crucial carbon parameters to develop a reference electrode and electrolyte formulation to further boost their performance and move a step forward in the commercialization of KIBs. Full article
(This article belongs to the Special Issue Advanced Anode Materials for Alkali-Ion Batteries)
Show Figures

Figure 1

Back to TopTop