Advanced Mathematical Methods: Theory and Applications

A special issue of Mathematics (ISSN 2227-7390).

Deadline for manuscript submissions: closed (15 October 2019) | Viewed by 50058

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physics and Astronomy, University of Bologna, Via Irnerio, 46, I-40126 Bologna, Italy
Interests: special functions; fractional calculus complex analysis; asymptotic methods; diffusion and wave propagation problems
Special Issues, Collections and Topics in MDPI journals

E-Mail
Guest Editor
Department of Physics, University of Bologna, Via Irnerio, 46, I-40126 Bologna, Italy
Interests: fractional calculus; special functions; viscoelasticity; theoretical and mathematical physics

Special Issue Information

Dear Colleagues,

The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena. The purpose of this Special Issue is to establish a collection of a restricted number of carefully selected articles authored by promising young scientists and the world’s leading experts in pure and applied mathematics, highlighting the state-of-the-art of the various research lines focussing on the study of analytical and numerical mathematical methods for pure and applied sciences.

We are also interested in methods including non-local operators related to fractional calculus, even though this is not necessarily the main theme of the Special Issue. It is additionally worth stressing that papers involving applications to deterministic and stochastic phenomena are welcome.

Prof. Francesco Mainardi
Dr. Andrea Giusti
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • applied mathematics
  • mathematical modelling
  • mathematical physics
  • mathematical methods for applied and theoretical sciences
  • numerical methods
  • special functions
  • integral transforms
  • non-local operators

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

2 pages, 133 KiB  
Editorial
Advanced Mathematical Methods: Theory and Applications
by Andrea Giusti and Francesco Mainardi
Mathematics 2020, 8(1), 107; https://doi.org/10.3390/math8010107 - 9 Jan 2020
Viewed by 2842
Abstract
The many technical and computational problems that appear to be constantly emerging in various branches of physics and engineering beg for a more detailed understanding of the fundamental mathematics that serves as the cornerstone of our way of understanding natural phenomena [...] Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)

Research

Jump to: Editorial, Review

9 pages, 253 KiB  
Article
The Role of the Central Limit Theorem in the Heterogeneous Ensemble of Brownian Particles Approach
by Silvia Vitali, Iva Budimir, Claudio Runfola and Gastone Castellani
Mathematics 2019, 7(12), 1145; https://doi.org/10.3390/math7121145 - 23 Nov 2019
Cited by 5 | Viewed by 3165
Abstract
The central limit theorem (CLT) and its generalization to stable distributions have been widely described in literature. However, many variations of the theorem have been defined and often their applicability in practical situations is not straightforward. In particular, the applicability of the CLT [...] Read more.
The central limit theorem (CLT) and its generalization to stable distributions have been widely described in literature. However, many variations of the theorem have been defined and often their applicability in practical situations is not straightforward. In particular, the applicability of the CLT is essential for a derivation of heterogeneous ensemble of Brownian particles (HEBP). Here, we analyze the role of the CLT within the HEBP approach in more detail and derive the conditions under which the existing theorems are valid. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
12 pages, 318 KiB  
Article
On the Matrix Mittag–Leffler Function: Theoretical Properties and Numerical Computation
by Marina Popolizio
Mathematics 2019, 7(12), 1140; https://doi.org/10.3390/math7121140 - 21 Nov 2019
Cited by 24 | Viewed by 4070
Abstract
Many situations, as for example within the context of Fractional Calculus theory, require computing the Mittag–Leffler (ML) function with matrix arguments. In this paper, we collect theoretical properties of the matrix ML function. Moreover, we describe the available numerical methods aimed at this [...] Read more.
Many situations, as for example within the context of Fractional Calculus theory, require computing the Mittag–Leffler (ML) function with matrix arguments. In this paper, we collect theoretical properties of the matrix ML function. Moreover, we describe the available numerical methods aimed at this purpose by stressing advantages and weaknesses. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
Show Figures

Figure 1

9 pages, 257 KiB  
Article
A Note on the Generalized Relativistic Diffusion Equation
by Luisa Beghin and Roberto Garra
Mathematics 2019, 7(11), 1009; https://doi.org/10.3390/math7111009 - 24 Oct 2019
Cited by 3 | Viewed by 2121
Abstract
We study here a generalization of the time-fractional relativistic diffusion equation based on the application of Caputo fractional derivatives of a function with respect to another function. We find the Fourier transform of the fundamental solution and discuss the probabilistic meaning of the [...] Read more.
We study here a generalization of the time-fractional relativistic diffusion equation based on the application of Caputo fractional derivatives of a function with respect to another function. We find the Fourier transform of the fundamental solution and discuss the probabilistic meaning of the results obtained in relation to the time-scaled fractional relativistic stable process. We briefly consider also the application of fractional derivatives of a function with respect to another function in order to generalize fractional Riesz-Bessel equations, suggesting their stochastic meaning. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
12 pages, 1979 KiB  
Article
Modeling Heavy Metal Sorption and Interaction in a Multispecies Biofilm
by Berardino D’Acunto, Luigi Frunzo, Vincenzo Luongo and Maria Rosaria Mattei
Mathematics 2019, 7(9), 781; https://doi.org/10.3390/math7090781 - 24 Aug 2019
Cited by 8 | Viewed by 3177
Abstract
A mathematical model able to simulate the physical, chemical and biological interactions prevailing in multispecies biofilms in the presence of a toxic heavy metal is presented. The free boundary value problem related to biofilm growth and evolution is governed by a nonlinear ordinary [...] Read more.
A mathematical model able to simulate the physical, chemical and biological interactions prevailing in multispecies biofilms in the presence of a toxic heavy metal is presented. The free boundary value problem related to biofilm growth and evolution is governed by a nonlinear ordinary differential equation. The problem requires the integration of a system of nonlinear hyperbolic partial differential equations describing the biofilm components evolution, and a systems of semilinear parabolic partial differential equations accounting for substrates diffusion and reaction within the biofilm. In addition, a semilinear parabolic partial differential equation is introduced to describe heavy metal diffusion and sorption. The biosoption process modeling is completed by the definition and integration of other two systems of nonlinear hyperbolic partial differential equations describing the free and occupied binding sites evolution, respectively. Numerical simulations of the heterotrophic-autotrophic interaction occurring in biofilm reactors devoted to wastewater treatment are presented. The high biosorption ability of bacteria living in a mature biofilm is highlighted, as well as the toxicity effect of heavy metals on autotrophic bacteria, whose growth directly affects the nitrification performance of bioreactors. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
Show Figures

Figure 1

28 pages, 338 KiB  
Article
Discrete Two-Dimensional Fourier Transform in Polar Coordinates Part I: Theory and Operational Rules
by Natalie Baddour
Mathematics 2019, 7(8), 698; https://doi.org/10.3390/math7080698 - 2 Aug 2019
Cited by 6 | Viewed by 5637
Abstract
The theory of the continuous two-dimensional (2D) Fourier transform in polar coordinates has been recently developed but no discrete counterpart exists to date. In this paper, we propose and evaluate the theory of the 2D discrete Fourier transform (DFT) in polar coordinates. This [...] Read more.
The theory of the continuous two-dimensional (2D) Fourier transform in polar coordinates has been recently developed but no discrete counterpart exists to date. In this paper, we propose and evaluate the theory of the 2D discrete Fourier transform (DFT) in polar coordinates. This discrete theory is shown to arise from discretization schemes that have been previously employed with the 1D DFT and the discrete Hankel transform (DHT). The proposed transform possesses orthogonality properties, which leads to invertibility of the transform. In the first part of this two-part paper, the theory of the actual manipulated quantities is shown, including the standard set of shift, modulation, multiplication, and convolution rules. Parseval and modified Parseval relationships are shown, depending on which choice of kernel is used. Similar to its continuous counterpart, the 2D DFT in polar coordinates is shown to consist of a 1D DFT, DHT and 1D inverse DFT. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
20 pages, 356 KiB  
Article
An Introduction to Space–Time Exterior Calculus
by Ivano Colombaro, Josep Font-Segura and Alfonso Martinez
Mathematics 2019, 7(6), 564; https://doi.org/10.3390/math7060564 - 21 Jun 2019
Cited by 7 | Viewed by 4197
Abstract
The basic concepts of exterior calculus for space–time multivectors are presented: Interior and exterior products, interior and exterior derivatives, oriented integrals over hypersurfaces, circulation and flux of multivector fields. Two Stokes theorems relating the exterior and interior derivatives with circulation and flux, respectively, [...] Read more.
The basic concepts of exterior calculus for space–time multivectors are presented: Interior and exterior products, interior and exterior derivatives, oriented integrals over hypersurfaces, circulation and flux of multivector fields. Two Stokes theorems relating the exterior and interior derivatives with circulation and flux, respectively, are derived. As an application, it is shown how the exterior-calculus space–time formulation of the electromagnetic Maxwell equations and Lorentz force recovers the standard vector-calculus formulations, in both differential and integral forms. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
Show Figures

Figure 1

12 pages, 312 KiB  
Article
Subordination Approach to Space-Time Fractional Diffusion
by Emilia Bazhlekova and Ivan Bazhlekov
Mathematics 2019, 7(5), 415; https://doi.org/10.3390/math7050415 - 9 May 2019
Cited by 11 | Viewed by 2748
Abstract
The fundamental solution to the multi-dimensional space-time fractional diffusion equation is studied by applying the subordination principle, which provides a relation to the classical Gaussian function. Integral representations in terms of Mittag-Leffler functions are derived for the fundamental solution and the subordination kernel. [...] Read more.
The fundamental solution to the multi-dimensional space-time fractional diffusion equation is studied by applying the subordination principle, which provides a relation to the classical Gaussian function. Integral representations in terms of Mittag-Leffler functions are derived for the fundamental solution and the subordination kernel. The obtained integral representations are used for numerical evaluation of the fundamental solution for different values of the parameters. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
Show Figures

Figure 1

17 pages, 307 KiB  
Article
Dynamic Keynesian Model of Economic Growth with Memory and Lag
by Vasily E. Tarasov and Valentina V. Tarasova
Mathematics 2019, 7(2), 178; https://doi.org/10.3390/math7020178 - 15 Feb 2019
Cited by 21 | Viewed by 6143
Abstract
A mathematical model of economic growth with fading memory and continuous distribution of delay time is suggested. This model can be considered as a generalization of the standard Keynesian macroeconomic model. To take into account the memory and gamma-distributed lag we use the [...] Read more.
A mathematical model of economic growth with fading memory and continuous distribution of delay time is suggested. This model can be considered as a generalization of the standard Keynesian macroeconomic model. To take into account the memory and gamma-distributed lag we use the Abel-type integral and integro-differential operators with the confluent hypergeometric Kummer function in the kernel. These operators allow us to propose an economic accelerator, in which the memory and lag are taken into account. The fractional differential equation, which describes the dynamics of national income in this generalized model, is suggested. The solution of this fractional differential equation is obtained in the form of series of the confluent hypergeometric Kummer functions. The asymptotic behavior of national income, which is described by this solution, is considered. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
12 pages, 284 KiB  
Article
On the Fredholm Property of the Trace Operators Associated with the Elastic Layer Potentials
by Giulio Starita and Alfonsina Tartaglione
Mathematics 2019, 7(2), 134; https://doi.org/10.3390/math7020134 - 1 Feb 2019
Cited by 6 | Viewed by 1929
Abstract
We deal with the system of equations of linear elastostatics, governing the equilibrium configurations of a linearly elastic body. We recall the basics of the theory of the elastic layer potentials and we extend the trace operators associated with the layer potentials to [...] Read more.
We deal with the system of equations of linear elastostatics, governing the equilibrium configurations of a linearly elastic body. We recall the basics of the theory of the elastic layer potentials and we extend the trace operators associated with the layer potentials to suitable sets of singular densities. We prove that the trace operators defined, for example, on W 1 k 1 / q , q ( Ω ) (with k 2 , q ( 1 , + ) and Ω an open connected set of R 3 of class C k ), satisfy the Fredholm property. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
16 pages, 271 KiB  
Article
Probabilistic Interpretation of Solutions of Linear Ultraparabolic Equations
by Michael D. Marcozzi
Mathematics 2018, 6(12), 286; https://doi.org/10.3390/math6120286 - 27 Nov 2018
Cited by 2 | Viewed by 2300
Abstract
We demonstrate the existence, uniqueness and Galerkin approximatation of linear ultraparabolic terminal value/infinite-horizon problems on unbounded spatial domains. Furthermore, we provide a probabilistic interpretation of the solution in terms of the expectation of an associated ultradiffusion process. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)

Review

Jump to: Editorial, Research

21 pages, 425 KiB  
Review
Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial
by Roberto Garrappa, Eva Kaslik and Marina Popolizio
Mathematics 2019, 7(5), 407; https://doi.org/10.3390/math7050407 - 7 May 2019
Cited by 98 | Viewed by 7455
Abstract
Several fractional-order operators are available and an in-depth knowledge of the selected operator is necessary for the evaluation of fractional integrals and derivatives of even simple functions. In this paper, we reviewed some of the most commonly used operators and illustrated two approaches [...] Read more.
Several fractional-order operators are available and an in-depth knowledge of the selected operator is necessary for the evaluation of fractional integrals and derivatives of even simple functions. In this paper, we reviewed some of the most commonly used operators and illustrated two approaches to generalize integer-order derivatives to fractional order; the aim was to provide a tool for a full understanding of the specific features of each fractional derivative and to better highlight their differences. We hence provided a guide to the evaluation of fractional integrals and derivatives of some elementary functions and studied the action of different derivatives on the same function. In particular, we observed how Riemann–Liouville and Caputo’s derivatives converge, on long times, to the Grünwald–Letnikov derivative which appears as an ideal generalization of standard integer-order derivatives although not always useful for practical applications. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
Show Figures

Figure 1

18 pages, 275 KiB  
Review
Some Schemata for Applications of the Integral Transforms of Mathematical Physics
by Yuri Luchko
Mathematics 2019, 7(3), 254; https://doi.org/10.3390/math7030254 - 12 Mar 2019
Cited by 9 | Viewed by 2819
Abstract
In this survey article, some schemata for applications of the integral transforms of mathematical physics are presented. First, integral transforms of mathematical physics are defined by using the notions of the inverse transforms and generating operators. The convolutions and generating operators of the [...] Read more.
In this survey article, some schemata for applications of the integral transforms of mathematical physics are presented. First, integral transforms of mathematical physics are defined by using the notions of the inverse transforms and generating operators. The convolutions and generating operators of the integral transforms of mathematical physics are closely connected with the integral, differential, and integro-differential equations that can be solved by means of the corresponding integral transforms. Another important technique for applications of the integral transforms is the Mikusinski-type operational calculi that are also discussed in the article. The general schemata for applications of the integral transforms of mathematical physics are illustrated on an example of the Laplace integral transform. Finally, the Mellin integral transform and its basic properties and applications are briefly discussed. Full article
(This article belongs to the Special Issue Advanced Mathematical Methods: Theory and Applications)
Back to TopTop