Analytical Sciences of/with Bio(mimetic) Membranes (Volume II)

A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Analysis and Characterization".

Deadline for manuscript submissions: closed (15 July 2023) | Viewed by 12613

Special Issue Editor


E-Mail Website
Guest Editor
Division of Chemical Engineering, Graduated School of Engineering Science, Osaka University, Osaka 565-0871, Japan
Interests: analysis of lipid bilayer; separation with lipid membrane; interface; micro–nano separation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Analytical Sciences of/with cell and bio(mimetic) membranes have been very important in fundamental and applied research. For example, analysis of cell membranes can reveal the mechanism of cell membrane function. In addition, artificial biomembranes can attain superior performance as sensors and imaging tools. Thus, novel, high-performance analytical sciences of/with cell and bio(mimetics) have been demanded for the progress of biology and for practical use.

This Special Issue on “Analytical Sciences of/with Bio(mimetic) Membranes (Volume II)” of the journal Membranes seeks manuscripts on bio(mimetic) membrane analysis and analysis with bio(mimetic) membranes. Topics include but are not limited to the analysis of cell membranes or biomimetic membranes such as liposomes, sensors, or separation with bio(mimetic) membranes, in fundamental or applied research. Authors are invited to submit their latest results in original papers, and reviews are also welcome.

Dr. Yukihiro Okamoto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cell membrane
  • biomimetic membrane
  • analytical science
  • sensor
  • separation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 9180 KiB  
Article
Studying Conformational Properties of Transmembrane Domain of KCNE3 in a Lipid Bilayer Membrane Using Molecular Dynamics Simulations
by Anna Clara Miranda Moura, Isaac K. Asare, Mateo Fernandez Cruz, Antonio Javier Franco Aguado, Kaeleigh Dyan Tuck, Conner C. Campbell, Matthew W. Scheyer, Ikponwmosa Obaseki, Steve Alston, Andrea N. Kravats, Charles R. Sanders, Gary A. Lorigan and Indra D. Sahu
Membranes 2024, 14(2), 45; https://doi.org/10.3390/membranes14020045 - 4 Feb 2024
Cited by 1 | Viewed by 2355
Abstract
KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles [...] Read more.
KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles with the residues T71, S74 and G78 situated along the concave face of the curved helix. During the interaction of KCNE3 and KCNQ1, KCNE3 pushes its transmembrane domain against KCNQ1 to lock the voltage sensor in its depolarized conformation. A cryo-EM study of KCNE3 complexed with KCNQ1 in nanodiscs suggested a deviation of the KCNE3 structure from its independent structure in isotropic bicelles. Despite the biological significance of KCNE3 TMD, the conformational properties of KCNE3 are poorly understood. Here, all atom molecular dynamics (MD) simulations were utilized to investigate the conformational dynamics of the transmembrane domain of KCNE3 in a lipid bilayer containing a mixture of POPC and POPG lipids (3:1). Further, the effect of the interaction impairing mutations (V72A, I76A and F68A) on the conformational properties of the KCNE3 TMD in lipid bilayers was investigated. Our MD simulation results suggest that the KCNE3 TMD adopts a nearly linear α helical structural conformation in POPC-POPG lipid bilayers. Additionally, the results showed no significant change in the nearly linear α-helical conformation of KCNE3 TMD in the presence of interaction impairing mutations within the sampled time frame. The KCNE3 TMD is more stable with lower flexibility in comparison to the N-terminal and C-terminal of KCNE3 in lipid bilayers. The overall conformational flexibility of KCNE3 also varies in the presence of the interaction-impairing mutations. The MD simulation data further suggest that the membrane bilayer width is similar for wild-type KCNE3 and KCNE3 containing mutations. The Z-distance measurement data revealed that the TMD residue site A69 is close to the lipid bilayer center, and residue sites S57 and S82 are close to the surfaces of the lipid bilayer membrane for wild-type KCNE3 and KCNE3 containing interaction-impairing mutations. These results agree with earlier KCNE3 biophysical studies. The results of these MD simulations will provide complementary data to the experimental outcomes of KCNE3 to help understand its conformational dynamic properties in a more native lipid bilayer environment. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

13 pages, 1893 KiB  
Article
Influence of Nitrosyl Iron Complex with Thiosulfate Ligands on Therapeutically Important Targets Related to Type 2 Diabetes Mellitus
by Irina I. Faingold, Yuliya V. Soldatova, Darya A. Poletaeva, Elena N. Klimanova and Nataliya A. Sanina
Membranes 2023, 13(7), 615; https://doi.org/10.3390/membranes13070615 - 21 Jun 2023
Cited by 1 | Viewed by 1467
Abstract
The high prevalence of type 2 diabetes mellitus (T2DM), and the lack of effective therapy, determine the need for new treatment options. The present study is focused on the NO-donors drug class as effective antidiabetic agents. Since numerous biological systems are involved in [...] Read more.
The high prevalence of type 2 diabetes mellitus (T2DM), and the lack of effective therapy, determine the need for new treatment options. The present study is focused on the NO-donors drug class as effective antidiabetic agents. Since numerous biological systems are involved in the pathogenesis and progression of T2DM, the most promising approach to the development of effective drugs for the treatment of T2DM is the search for pharmacologically active compounds that are selective for a number of therapeutic targets for T2DM and its complications: oxidative stress, non-enzymatic protein glycation, polyol pathway. The nitrosyl iron complex with thiosulfate ligands was studied in this work. Binuclear iron nitrosyl complexes are synthetic analogues of [2Fe–2S] centers in the regulatory protein natural reservoirs of NO. Due to their ability to release NO without additional activation under physiological conditions, these compounds are of considerable interest for the development of potential drugs. The present study explores the effects of tetranitrosyl iron complex with thiosulfate ligands (TNIC-ThS) on T2DM and its complications regarding therapeutic targets in vitro, as well as its ability to bind liposomal membrane, inhibit lipid peroxidation (LPO), and non-enzymatic glycation of bovine serum albumin (BSA), as well as aldose reductase, the enzyme that catalyzes the reduction in glucose to sorbitol in the polyol pathway. Using the fluorescent probe method, it has been shown that TNIC-ThS molecules interact with both hydrophilic and hydrophobic regions of model membranes. TNIC-ThS inhibits lipid peroxidation, exhibiting antiradical activity due to releasing NO (IC50 = 21.5 ± 3.7 µM). TNIC-ThS was found to show non-competitive inhibition of aldose reductase with Ki value of 5.25 × 10−4 M. In addition, TNIC-ThS was shown to be an effective inhibitor of the process of non-enzymatic protein glycation in vitro (IC50 = 47.4 ± 7.6 µM). Thus, TNIC-ThS may be considered to contribute significantly to the treatment of T2DM and diabetic complications. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

9 pages, 2979 KiB  
Article
Microscopic Observation of Membrane Fusion between Giant Liposomes and Baculovirus Budded Viruses Activated by the Release of a Caged Proton
by Misako Nishigami, Yuki Uno and Kanta Tsumoto
Membranes 2023, 13(5), 507; https://doi.org/10.3390/membranes13050507 - 11 May 2023
Viewed by 1590
Abstract
Baculovirus (Autographa californica multiple nucleopolyhedrovirus, AcMNPV) is an envelope virus possessing a fusogenic protein, GP64, which can be activated under weak acidic conditions close to those in endosomes. When the budded viruses (BVs) are bathed at pH 4.0 to 5.5, they can [...] Read more.
Baculovirus (Autographa californica multiple nucleopolyhedrovirus, AcMNPV) is an envelope virus possessing a fusogenic protein, GP64, which can be activated under weak acidic conditions close to those in endosomes. When the budded viruses (BVs) are bathed at pH 4.0 to 5.5, they can bind to liposome membranes with acidic phospholipids, and this results in membrane fusion. In the present study, using the caged-proton reagent 1-(2-nitrophenyl)ethyl sulfate, sodium salt (NPE-caged-proton), which can be uncaged by irradiation with ultraviolet light, we triggered the activation of GP64 by lowering the pH and observed membrane fusion on giant liposomes (giant unilamellar vesicles, GUVs) by visualizing the lateral diffusion of fluorescence emitted from a lipophilic fluorochrome (octadecyl rhodamine B chloride, R18) that stained viral envelopes of BVs. In this fusion, entrapped calcein did not leak from the target GUVs. The behavior of BVs prior to the triggering of membrane fusion by the uncaging reaction was closely monitored. BVs appeared to accumulate around a GUV with DOPS, implying that BVs preferred phosphatidylserine. The monitoring of viral fusion triggered by the uncaging reaction could be a valuable tool for revealing the delicate behavior of viruses affected by various chemical and biochemical environments. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

15 pages, 2788 KiB  
Article
The Biomimetic System of Oleanolic Acid and Oleic Acid at the Air-Water Interface–Interactions in Terms of Nanotechnology-Based Drug Delivery Systems
by Martyna Krajewska, Katarzyna Dopierała and Krystyna Prochaska
Membranes 2022, 12(12), 1215; https://doi.org/10.3390/membranes12121215 - 1 Dec 2022
Cited by 4 | Viewed by 2153
Abstract
Oleanolic acid (OLA) and oleic acid (OA) are ubiquitous in the plant kingdom, exhibiting a therapeutic effect on human health, and are components of novel pharmaceutical formulations. Since OLA has limited solubility, the utilization of nanotechnology-based drug delivery systems enhancing bioavailability is highly [...] Read more.
Oleanolic acid (OLA) and oleic acid (OA) are ubiquitous in the plant kingdom, exhibiting a therapeutic effect on human health, and are components of novel pharmaceutical formulations. Since OLA has limited solubility, the utilization of nanotechnology-based drug delivery systems enhancing bioavailability is highly advantageous. We report on the interfacial behavior of the OLA:OA system at various molar ratios, using the Langmuir technique to assess the dependence of the molar composition on miscibility and rheological properties affecting film stability. Specifically, we evaluate the interfacial properties (morphology, thermodynamics, miscibility, and viscoelasticity) of the OLA:OA binary system in various molar ratios, and indicate how the OLA:OA system exhibits the most favorable molecular interactions. We apply the Langmuir monolayer technique along with the complementary techniques of Brewster angle microscopy, dilatational interfacial rheology, and excess free energy calculations. Results demonstrate that the properties of mixed monolayers depend on OLA:OA molar ratio. Most of the systems (OLA:OA 2:1, 1:1, 1:5) are assumed to be immiscible at surface pressures >10 mN/m. Moreover, the OLA:OA 1:2 is immiscible over the entire surface pressure range. However, the existence of miscibility between molecules of OLA and OA in the 5:1 for every surface pressure tested suggests that OA molecules incorporate into the OLA lattice structure, improving the stability of the mixed film. The results are discussed in terms of providing physicochemical insights into the behavior of the OLA:OA systems at the interface, which is of high interest in pharmaceutical design. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

16 pages, 2987 KiB  
Article
The Influence of Cationic Nitrosyl Iron Complex with Penicillamine Ligands on Model Membranes, Membrane-Bound Enzymes and Lipid Peroxidation
by Darya A. Poletaeva, Yuliya V. Soldatova, Anastasiya V. Smolina, Maxim A. Savushkin, Elena N. Klimanova, Nataliya A. Sanina and Irina I. Faingold
Membranes 2022, 12(11), 1088; https://doi.org/10.3390/membranes12111088 - 2 Nov 2022
Cited by 4 | Viewed by 1756
Abstract
This paper shows the biological effects of cationic binuclear tetranitrosyl iron complex with penicillamine ligands (TNIC–PA). Interaction with a model membrane was assessed using a fluorescent probes technique. Antioxidant activity was studied using a thiobarbituric acid reactive species assay (TBARS) and a chemiluminescence [...] Read more.
This paper shows the biological effects of cationic binuclear tetranitrosyl iron complex with penicillamine ligands (TNIC–PA). Interaction with a model membrane was assessed using a fluorescent probes technique. Antioxidant activity was studied using a thiobarbituric acid reactive species assay (TBARS) and a chemiluminescence assay. The catalytic activity of monoamine oxidase (MAO) was determined by measuring liberation of ammonia. Antiglycation activity was determined fluometrically by thermal glycation of albumine by D-glucose. The higher values of Stern–Volmer constants (KSV) obtained for the pyrene located in hydrophobic regions (3.9 × 104 M−1) compared to KSV obtained for eosin Y located in the polar headgroup region (0.9 × 104 M−1) confirms that TNIC–PA molecules prefer to be located in the hydrophobic acyl chain region, close to the glycerol group of lipid molecules. TNIC–PA effectively inhibited the process of spontaneous lipid peroxidation, due to additive contributions from releasing NO and penicillamine ligand (IC50 = 21.4 µM) and quenched luminol chemiluminescence (IC50 = 3.6 μM). High activity of TNIC–PA in both tests allows us to assume a significant role of its radical-scavenging activity in the realization of antioxidant activity. It was shown that TNIC–PA (50–1000 μM) selectively inhibits the membrane-bound enzyme MAO-A, a major source of ROS in the heart. In addition, TNIC–PA is an effective inhibitor of non-enzymatic protein glycation. Thus, the evaluated biological effects of TNIC–PA open up the possibility of its practical application in chemotherapy for socially significant diseases, especially cardiovascular diseases. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Figure 1

14 pages, 1442 KiB  
Article
Staphylococcus aureus Carotenoids Modulate the Thermotropic Phase Behavior of Model Systems That Mimic Its Membrane Composition
by Marcela Manrique-Moreno, Małgorzata Jemioła-Rzemińska, Jessica Múnera-Jaramillo, Gerson-Dirceu López, Elizabeth Suesca, Chad Leidy and Kazimierz Strzałka
Membranes 2022, 12(10), 945; https://doi.org/10.3390/membranes12100945 - 28 Sep 2022
Cited by 6 | Viewed by 2574
Abstract
Staphylococcus aureus (S. aureus) is a pathogenic gram-positive bacterium that normally resides in the skin and nose of the human body. It is subject to fluctuations in environmental conditions that may affect the integrity of the membrane. S. aureus produces carotenoids, [...] Read more.
Staphylococcus aureus (S. aureus) is a pathogenic gram-positive bacterium that normally resides in the skin and nose of the human body. It is subject to fluctuations in environmental conditions that may affect the integrity of the membrane. S. aureus produces carotenoids, which act as antioxidants. However, these carotenoids have also been implicated in modulating the biophysical properties of the membrane. Here, we investigate how carotenoids modulate the thermotropic phase behavior of model systems that mimic the phospholipid composition of S. aureus. We found that carotenoids depress the main phase transition of DMPG and CL, indicating that they strongly affect cooperativity of membrane lipids in their gel phase. In addition, carotenoids modulate the phase behavior of mixtures of DMPG and CL, indicating that they may play a role in modulation of lipid domain formation in S. aureus membranes. Full article
(This article belongs to the Special Issue Analytical Sciences of/with Bio(mimetic) Membranes (Volume II))
Show Figures

Graphical abstract

Back to TopTop