Modeling and Design of Membrane Reactors
A special issue of Membranes (ISSN 2077-0375). This special issue belongs to the section "Membrane Physics and Theory".
Deadline for manuscript submissions: closed (15 August 2018) | Viewed by 27353
Special Issue Editors
Interests: membrane process modeling; chemical reactors; membrane reactors; bioreactors; hydrogen production processes; transport phenomena; separation processes
Special Issues, Collections and Topics in MDPI journals
Interests: hydrogen production from renewable sources; membrane reactors; transport phenomena; micromixing
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Membrane reactors are attracting increasing interest because of the opportunity they represent in increasing the efficiency of small-scale systems. Their use in gas phase reactions has been proposed for a variety of applications, where they may act either as selective extractors or as distributors. In particular, membrane reactors are generally employed for the selective permeation of hydrogen. For instance, they have been proposed for hydrogen production through reactions, such as steam reforming of hydrocarbons, water gas shift, propane and ethane dehydrogenation, and ammonia decomposition. Such applications require the use of Pd-based membranes, through which hydrogen permeates selectively, enhancing conversion and allowing the production of pure hydrogen. Perovskite-based membranes, which present a high selectivity towards oxygen permeation, are instead used as distributors for reactions, such as the partial oxidation of methane or ammonia, autothermal reforming, and oxidative dehy-drogenation of alkanes. In this case, the use of the membranes allows the achievement of uniform species concentrations along reactors, leading to a higher product selectivity; however, they may also be used as extractors to enhance conversion. Processes that take advantage of oxygen extraction include the coupling of oxygen-consuming reactions with water splitting, thermal decomposition of CO2, and NOx decomposition. In other applications, the reaction is localized on the membrane, which acts as the catalyst and separator at the same time.
The modeling of membrane reactors is essential to exploit all the benefits that can be derived from their optimal design, but it represents an ongoing challenge because of the complexity of describing systems in which the transport of mass, momentum, and energy are strongly coupled. With reference to mass transport, the effects of convection, dispersion, reaction, and permeation should, in principle, be simultaneously accounted for. Gas composition may affect membrane permeance and the coupling of the rates of permeation and reaction can result in multiple steady states. The reaction and permeation may cause a change in density that affects momentum transport. Furthermore, temperature gradients may be formed as a consequence of the heat of reaction, energy transport associated with the permeation, and the potential presence of a heating system.
The purpose of this Special Issue is to publish research papers on advances in membrane reactor modeling and design, as well as review papers. Potential topics include the modeling of:
- Membrane reactors for enhanced conversion/product selectivity
- Membrane reactors for controlled feed distribution
- Membrane reactors for coupled reactor systems
- Catalytic membrane reactors
Prof. Maria Cristina Annesini
Dr. Maria Anna Murmura
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- membrane reactors
- selectivity
- yield
- permeation
- feed distribution
- catalytic membrane
- perovskite membrane
- palladium membrane
- modeling
- CFD
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.