Carbonic Anhydrases and Metabolism
A special issue of Metabolites (ISSN 2218-1989).
Deadline for manuscript submissions: closed (21 December 2018) | Viewed by 85401
Special Issue Editor
Interests: drug design; metalloenzymes; carbonic anhydrases; anticancer agents; antiinfectives; sulfonamides; coumarins
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes present in all life kingdoms, as they equilibrate the reaction between three simple but essential chemical species: CO2, bicarbonate, and protons. Discovered more than 80 year ago, in 1933, these enzymes were extensively investigated due to the biomedical application of their inhibitors, but also because they are an extraordinary example of convergent evolution, with seven genetically-distinct CA families that evolved independently in Bacteria, Archaea, and Eukarya. CAs are also among the most efficient enzymes known in nature, due to the fact that the uncatalyzed CO2 hydration is a very slow process, and the physiologic demands for its conversion to ionic, soluble species is very high. Inhibition of the CAs has pharmacologic applications in many fields, such as antiglaucoma, anticonvulsant, antiobesity, and anticancer agents/diagnostic tools, but is also emerging for designing anti-infectives, i.e., antifungal, antibacterial and antiprotozoan agents with a novel mechanism of action. Mitochondrial CAs are implicated in de novo lipogenesis allowing the ability to consider selective inhibitors of such enzymes as useful for the development of new antiobesity drugs. As the tumor metabolism is diverse form that of normal cells, ultimately, relevant contributions on the role of the tumor-associated isoforms CA IX and XII in these phenomena have been published, and the two isoforms have been validated as novel antitumor/antimetastatic drug targets, with antibodies and small molecule inhibitors in various stages of clinical development. CAs also play a crucial role in other metabolic processes connected with urea biosynthesis, gluconeogenesis, etc., since many carboxylation reactions catalyzed by acetyl-coenzyme A carboxylase or pyruvate carboxylase use bicarbonate not CO2 as a substrate. In organisms other than mammals, e.g., plants, algae, and cyanobacteria, CAs are involved in photosynthesis, whereas, in many parasites (fungi, protozoa), they are involved in the de novo synthesis of important metabolites (lipids, nucleic acids, etc.). The metabolic effects related to interference with CA activity were, however, scarcely investigated. The present Special Issue of Metabolites has the goal of filling this gap, by presenting the latest developments in the field of CAs and their role in metabolism.
Prof. Dr. Claudiu T. Supuran
Guest Editor
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- carbonic anhydrase
- mitochondrial isoforms
- tumor-associated isoforms
- antiobesity drug
- anticancer drug
- antiinfectives
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.