Micro/Nanofluidic Devices for Single Cell Analysis

A special issue of Micromachines (ISSN 2072-666X).

Deadline for manuscript submissions: closed (31 July 2013) | Viewed by 103069

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Distinguished Professor, Department of Engineering and System Science, National Tsing Hua University (NTHU), Affiliated Research Fellow, Academia Sinica, Hsinchu, Taiwan
Interests: organ on a chip; microfluidic systems; biosensors; CTCs/CTM diagnosis; single cell analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cells are the most fundamental building blocks for most of life forms, and always play a significant role in coordinating with one another to perform systematic functions in living creatures. However the behaviors of cell to cell or cell to the environment with their organelles and their intracellular physical/biochemical/biological effects are still unknown. To insight this interaction, ensemble measurement for millions of cells together cannot provide the proper information, such as stem cell proliferation and differentiation, neural network coordination, and cardiomyocytes synchronization. Thus single cells analysis has come into frontier research since last few decades. To analyze the cellular function, single cells analysis (SCA) can be conducted by employing miniaturized devices, whose dimension is similar to that of single cells. Micro/nanofludic device with the power to manipulate and detect biosamples, reagents, or biomolecules in micro/nano scale can well fulfill this requirement for single cells analysis. The analysis can be performed by combining capillary electrophoresis (CE) with laser induced fluorescence (LIF) detection methods, electrochemical detection (ED), flow cytometry, mass spectrometer etc. However this powerful technology can provide specific information about cell interactions with high spatial and temporal resolution.  Micro-nanofludic device is not only useful for cell manipulation, cell lysis, cell separation but also it can easily control biochemical, electrical, mechanical parameters for SCA analysis. This special issue will invite manuscripts conducting researches on integrated micro or nano systems dealing with single cell manipulation, injection, separation, lysis of single cell, dynamics of single cell with the use of micro/nanofluidic devices combined with various detection schemes. The role of single cell analysis is recognized as one of the important pathways for system biology, proteomics, genomics, metabolomics and fluxomics and potentially leads to paradigm shift. The discussion of application of single cell analysis for biocatalysis, metabolic, bioprocess engineering and the future challenge for single cell analysis with their advantages and limitations are also welcome to be included in the manuscripts.

Dr. Tuhin Subhra Santra
Assistant Guest Editor
Prof. Dr. Fan-Gang Tseng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lab on a Chip
  • life on a Chip
  • organ on a chip
  • lab in a Cell
  • cell chip
  • micro total analysis (µTAS)
  • microfluidics
  • nanofluidics
  • single-cell perturbation
  • single-cell cultivation
  • single cell proteomics
  • single cells interaction
  • dielectrophoresis
  • electrophoresis
  • optical Trapping
  • capillary electrophoresis
  • electroporation
  • flow cytometry
  • heterogeneity
  • mechanical characterization
  • optical characterization
  • biochemical characterization
  • system biology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

90 KiB  
Editorial
Micro/Nanofluidic Devices for Single Cell Analysis
by Tuhin Subhra Santra and Fan Gang Tseng
Micromachines 2014, 5(2), 154-157; https://doi.org/10.3390/mi5020154 - 3 Apr 2014
Cited by 22 | Viewed by 6211
Abstract
The Special Issue of Micromachines entitled “Micro/Nanofluidic Devices for Single Cell Analysis” covers recent advancements regarding the analysis of single cells by different microfluidic approaches. To understand cell to cell behavior with their organelles and their intracellular biochemical effect, single cell analysis (SCA) [...] Read more.
The Special Issue of Micromachines entitled “Micro/Nanofluidic Devices for Single Cell Analysis” covers recent advancements regarding the analysis of single cells by different microfluidic approaches. To understand cell to cell behavior with their organelles and their intracellular biochemical effect, single cell analysis (SCA) can provide much more detailed information from small groups of cells or even single cells, compared to conventional approaches, which only provide ensemble-average information of millions of cells together. Earlier reviews provided single cell analysis using different approaches [1–3]. The author demonstrates invasive and noninvasive with time and non-time resolved SCA [1]; whereas some other literature provided destructive (with dyes, DNA, RNA, proteins and amino acids) and nondestructive (electroporation, impedance measurement and fluorescence based methods) cellular content analysis using microfluidic devices [3]. Further literature also suggest that single cell analysis is possible with capillary electrophoresis (CE) combined with a detection method such as electrochemical detection (ED), laser induced fluorescence (LIF) detection and mass spectrometry (MS) [4,5]. [...] Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)

Research

Jump to: Editorial, Review

517 KiB  
Article
A Single-Cell Study of a Highly Effective Hog1 Inhibitor for in Situ Yeast Cell Manipulation
by Charlotte Hamngren Blomqvist, Peter Dinér, Morten Grøtli, Mattias Goksör and Caroline B. Adiels
Micromachines 2014, 5(1), 81-96; https://doi.org/10.3390/mi5010081 - 19 Feb 2014
Cited by 5 | Viewed by 7698
Abstract
We present a single cell study of a highly effective Hog1 inhibitor. For this application, we used sequential treatment of a Saccharomyces cerevisiae cell array, with the Hog1 inhibitor and osmotic stress. For this purpose, a four-inlet microfluidic chamber with controlled introduction of [...] Read more.
We present a single cell study of a highly effective Hog1 inhibitor. For this application, we used sequential treatment of a Saccharomyces cerevisiae cell array, with the Hog1 inhibitor and osmotic stress. For this purpose, a four-inlet microfluidic chamber with controlled introduction of two different cell strains within the same experimental setting and a subsequent rapid switching between treatments was designed. Multiple cell strains within the same experiment is a unique feature which is necessary for determining the expected absent cellular response. The nuclear translocation of the cytosolic MAPK, Hog1, was monitored by fluorescence imaging of Hog1-GFP on a single-cell level. An optical tweezers setup was used for controlled cell capture and array formation. Nuclear Hog1-GFP localization was impaired for treated cells, providing evidence of a congenial microfluidic setup, where the control cells within the experiments validated its appropriateness. The chamber enables multiple treatments with incubation times in the order of seconds and the possibility to remove either of the treatments during measurement. This flexibility and the possibility to use internal control cells ensures it a valuable scientific tool for unraveling the HOG pathway, similar signal transduction pathways and other biological mechanisms where temporal resolution and real time imaging is a prerequisite. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

900 KiB  
Article
Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications
by Amin Abbaszadeh Banaeiyan, Doryaneh Ahmadpour, Caroline Beck Adiels and Mattias Goksör
Micromachines 2013, 4(4), 414-430; https://doi.org/10.3390/mi4040414 - 3 Dec 2013
Cited by 21 | Viewed by 10448
Abstract
The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput [...] Read more.
The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput single-cell experiments. The system employs pure hydrodynamic forces for easy cell trapping and is readily fabricated in polydimethylsiloxane (PDMS) using soft lithography techniques. The cell-trapping array consists of V-shaped pockets designed to accommodate up to six Saccharomyces cerevisiae (yeast cells) with the average diameter of 4 μm. We used this platform to monitor the impact of flow rate modulation on the arsenite (As(III)) uptake in yeast. Redistribution of a green fluorescent protein (GFP)-tagged version of the heat shock protein Hsp104 was followed over time as read out. Results showed a clear reverse correlation between the arsenite uptake and three different adjusted low = 25 nL min−1, moderate = 50 nL min−1, and high = 100 nL min−1 flow rates. We consider the presented device as the first building block of a future integrated application-specific cell-trapping array that can be used to conduct complete single cell experiments on different cell types. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

3816 KiB  
Article
Polydimethylsiloxane (PDMS) Sub-Micron Traps for Single-Cell Analysis of Bacteria
by Christopher Probst, Alexander Grünberger, Wolfgang Wiechert and Dietrich Kohlheyer
Micromachines 2013, 4(4), 357-369; https://doi.org/10.3390/mi4040357 - 11 Oct 2013
Cited by 41 | Viewed by 11017
Abstract
Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia [...] Read more.
Microfluidics has become an essential tool in single-cell analysis assays for gaining more accurate insights into cell behavior. Various microfluidics methods have been introduced facilitating single-cell analysis of a broad range of cell types. However, the study of prokaryotic cells such as Escherichia coli and others still faces the challenge of achieving proper single-cell immobilization simply due to their small size and often fast growth rates. Recently, new approaches were presented to investigate bacteria growing in monolayers and single-cell tracks under environmental control. This allows for high-resolution time-lapse observation of cell proliferation, cell morphology and fluorescence-coupled bioreporters. Inside microcolonies, interactions between nearby cells are likely and may cause interference during perturbation studies. In this paper, we present a microfluidic device containing hundred sub-micron sized trapping barrier structures for single E. coli cells. Descendant cells are rapidly washed away as well as components secreted by growing cells. Experiments show excellent growth rates, indicating high cell viability. Analyses of elongation and growth rates as well as morphology were successfully performed. This device will find application in prokaryotic single-cell studies under constant environment where by-product interference is undesired. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

733 KiB  
Article
Lysis of a Single Cyanobacterium for Whole Genome Amplification
by Eric W. Hall, Samuel Kim, Visham Appadoo and Richard N. Zare
Micromachines 2013, 4(3), 321-332; https://doi.org/10.3390/mi4030321 - 21 Aug 2013
Cited by 11 | Viewed by 8752
Abstract
Bacterial species from natural environments, exhibiting a great degree of genetic diversity that has yet to be characterized, pose a specific challenge to whole genome amplification (WGA) from single cells. A major challenge is establishing an effective, compatible, and controlled lysis protocol. We [...] Read more.
Bacterial species from natural environments, exhibiting a great degree of genetic diversity that has yet to be characterized, pose a specific challenge to whole genome amplification (WGA) from single cells. A major challenge is establishing an effective, compatible, and controlled lysis protocol. We present a novel lysis protocol that can be used to extract genomic information from a single cyanobacterium of Synechocystis sp. PCC 6803 known to have multilayer cell wall structures that resist conventional lysis methods. Simple but effective strategies for releasing genomic DNA from captured cells while retaining cellular identities for single-cell analysis are presented. Successful sequencing of genetic elements from single-cell amplicons prepared by multiple displacement amplification (MDA) is demonstrated for selected genes (15 loci nearly equally spaced throughout the main chromosome). Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

921 KiB  
Article
On-Chip Enucleation of Bovine Oocytes using Microrobot-Assisted Flow-Speed Control
by Lin Feng, Masaya Hagiwara, Akihiko Ichikawa and Fumihito Arai
Micromachines 2013, 4(2), 272-285; https://doi.org/10.3390/mi4020272 - 21 Jun 2013
Cited by 44 | Viewed by 8983
Abstract
In this study, we developed a microfluidic chip with a magnetically driven microrobot for oocyte enucleation. A microfluidic system was specially designed for enucleation, and the microrobot actively controls the local flow-speed distribution in the microfluidic chip. The microrobot can adjust fluid resistances [...] Read more.
In this study, we developed a microfluidic chip with a magnetically driven microrobot for oocyte enucleation. A microfluidic system was specially designed for enucleation, and the microrobot actively controls the local flow-speed distribution in the microfluidic chip. The microrobot can adjust fluid resistances in a channel and can open or close the channel to control the flow distribution. Analytical modeling was conducted to control the fluid speed distribution using the microrobot, and the model was experimentally validated. The novelties of the developed microfluidic system are as follows: (1) the cutting speed improved significantly owing to the local fluid flow control; (2) the cutting volume of the oocyte can be adjusted so that the oocyte undergoes less damage; and (3) the nucleus can be removed properly using the combination of a microrobot and hydrodynamic forces. Using this device, we achieved a minimally invasive enucleation process. The average enucleation time was 2.5 s and the average removal volume ratio was 20%. The proposed new system has the advantages of better operation speed, greater cutting precision, and potential for repeatable enucleation. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

3124 KiB  
Article
Analysis of Electric Fields inside Microchannels and Single Cell Electrical Lysis with a Microfluidic Device
by Bashir I. Morshed, Maitham Shams and Tofy Mussivand
Micromachines 2013, 4(2), 243-256; https://doi.org/10.3390/mi4020243 - 7 Jun 2013
Cited by 11 | Viewed by 10940
Abstract
Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for [...] Read more.
Analysis of electric fields generated inside the microchannels of a microfluidic device for electrical lysis of biological cells along with experimental verification are presented. Electrical lysis is the complete disintegration of cell membranes, due to a critical level of electric fields applied for a critical duration on a biological cell. Generating an electric field inside a microchannel of a microfluidic device has many advantages, including the efficient utilization of energy and low-current requirement. An ideal microchannel model was compared with a practical microchannel model using a finite element analysis tool that suggests that the overestimation error can be over 10%, from 2.5 mm or smaller, in the length of a microchannel. Two analytical forms are proposed to reduce this overestimation error. Experimental results showed that the high electric field is confined only inside the microchannel that is in agreement with the simulation results. Single cell electrical lysis was conducted with a fabricated microfluidic device. An average of 800 V for seven seconds across an 8 mm-long microchannel with the dimension of 100 μm × 20 μm was required for lysis, with electric fields exceeding 100 kV/m and consuming 300 mW. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

1396 KiB  
Review
Ultrasound-Induced Cell–Cell Interaction Studies in a Multi-Well Microplate
by Martin Wiklund, Athanasia E. Christakou, Mathias Ohlin, Ida Iranmanesh, Thomas Frisk, Bruno Vanherberghen and Björn Önfelt
Micromachines 2014, 5(1), 27-49; https://doi.org/10.3390/mi5010027 - 6 Feb 2014
Cited by 23 | Viewed by 9572
Abstract
This review describes the use of ultrasound for inducing and retaining cell-cell contact in multi-well microplates combined with live-cell fluorescence microscopy. This platform has been used for studying the interaction between natural killer (NK) cells and cancer cells at the level of individual [...] Read more.
This review describes the use of ultrasound for inducing and retaining cell-cell contact in multi-well microplates combined with live-cell fluorescence microscopy. This platform has been used for studying the interaction between natural killer (NK) cells and cancer cells at the level of individual cells. The review includes basic principles of ultrasonic particle manipulation, design criteria when building a multi-well microplate device for this purpose, biocompatibility aspects, and finally, two examples of biological applications: Dynamic imaging of the inhibitory immune synapse, and studies of the heterogeneity in killing dynamics of NK cells interacting with cancer cells. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

420 KiB  
Review
Review on Impedance Detection of Cellular Responses in Micro/Nano Environment
by Kin Fong Lei
Micromachines 2014, 5(1), 1-12; https://doi.org/10.3390/mi5010001 - 7 Jan 2014
Cited by 65 | Viewed by 10462
Abstract
In general, cell culture-based assays, investigations of cell number, viability, and metabolic activities during culture periods, are commonly performed to study the cellular responses under various culture conditions explored. Quantification of cell numbers can provide the information of cell proliferation. Cell viability study [...] Read more.
In general, cell culture-based assays, investigations of cell number, viability, and metabolic activities during culture periods, are commonly performed to study the cellular responses under various culture conditions explored. Quantification of cell numbers can provide the information of cell proliferation. Cell viability study can understand the percentage of cell death under a specific tested substance. Monitoring of the metabolic activities is an important index for the study of cell physiology. Based on the development of microfluidic technology, microfluidic systems incorporated with impedance measurement technique, have been reported as a new analytical approach for cell culture-based assays. The aim of this article is to review recent developments on the impedance detection of cellular responses in micro/nano environment. These techniques provide an effective and efficient technique for cell culture-based assays. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

4447 KiB  
Review
Recent Trends on Micro/Nanofluidic Single Cell Electroporation
by Tuhin Subhra Santra and Fang Gang Tseng
Micromachines 2013, 4(3), 333-356; https://doi.org/10.3390/mi4030333 - 6 Sep 2013
Cited by 59 | Viewed by 17510
Abstract
The behaviors of cell to cell or cell to environment with their organelles and their intracellular physical or biochemical effects are still not fully understood. Analyzing millions of cells together cannot provide detailed information, such as cell proliferation, differentiation or different responses to [...] Read more.
The behaviors of cell to cell or cell to environment with their organelles and their intracellular physical or biochemical effects are still not fully understood. Analyzing millions of cells together cannot provide detailed information, such as cell proliferation, differentiation or different responses to external stimuli and intracellular reaction. Thus, single cell level research is becoming a pioneering research area that unveils the interaction details in high temporal and spatial resolution among cells. To analyze the cellular function, single cell electroporation can be conducted by employing a miniaturized device, whose dimension should be similar to that of a single cell. Micro/nanofluidic devices can fulfill this requirement for single cell electroporation. This device is not only useful for cell lysis, cell to cell fusion or separation, insertion of drug, DNA and antibodies inside single cell, but also it can control biochemical, electrical and mechanical parameters using electroporation technique. This device provides better performance such as high transfection efficiency, high cell viability, lower Joule heating effect, less sample contamination, lower toxicity during electroporation experiment when compared to bulk electroporation process. In addition, single organelles within a cell can be analyzed selectively by reducing the electrode size and gap at nanoscale level. This advanced technique can deliver (in/out) biomolecules precisely through a small membrane area (micro to nanoscale area) of the single cell, known as localized single cell membrane electroporation (LSCMEP). These articles emphasize the recent progress in micro/nanofluidic single cell electroporation, which is potentially beneficial for high-efficient therapeutic and delivery applications or understanding cell to cell interaction. Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis)
Show Figures

Figure 1

Back to TopTop