molecules-logo

Journal Browser

Journal Browser

Molecular Spectroscopy and Molecular Structure in Europe

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Cross-Field Chemistry".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 1228

Special Issue Editor


E-Mail Website
Guest Editor
Laboratoire Interdisciplinaire Carnot de Bourgogne UMR 6303 CNRS/uB, 9 Avenue Alain Savary, BP 47870, CEDEX, 21078 Dijon, France
Interests: molecular spectroscopy; high-resolution infrared and Raman spectra; spectrum simulations; tensorial formalism; atmospheric applications; (exo)planetary applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is dedicated to experimental and theoretical studies of molecular spectra and structure from European scholars. Europe has always had a very strong and innovative community in this field. These groups presently continue to develop state-of-the-art novel experimental and theoretical techniques. Paper topics in this issue should be dedicated to high-resolution molecular spectroscopy techniques in the gas phase, over the whole spectral range, from microwave to ultraviolet. The described results may lead to the accurate determination of molecular structures and/or to the simulation of spectra and radiative transfer. Applications may be related to atmospheric, (exo)-planetary, interstellar medium, and also industrial studies requiring remote sensing approaches for the detection of gas-phase molecular species.

Prof. Dr. Vincent Boudon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • high-resolution molecular spectra
  • high-resolution experimental techniques
  • theory of molecular spectra
  • theory of molecular structure
  • effective Hamiltonians
  • quantum chemistry calculations
  • atmospheric applications
  • astrophysical applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 9884 KiB  
Article
The Far-Infrared Absorption Spectrum of HD16O: Experimental Line Positions, Accurate Empirical Energy Levels, and a Recommended Line List
by Semen N. Mikhailenko, Ekaterina V. Karlovets, Aleksandra O. Koroleva and Alain Campargue
Molecules 2024, 29(23), 5508; https://doi.org/10.3390/molecules29235508 - 21 Nov 2024
Viewed by 307
Abstract
The far-infrared absorption spectrum of monodeuterated water vapor, HD16O, is analyzed using three high-sensitivity absorption spectra recorded by high-resolution Fourier transform spectroscopy at the SOLEIL synchrotron facility. The gas sample was obtained using a 1:1 mixture of H2O and [...] Read more.
The far-infrared absorption spectrum of monodeuterated water vapor, HD16O, is analyzed using three high-sensitivity absorption spectra recorded by high-resolution Fourier transform spectroscopy at the SOLEIL synchrotron facility. The gas sample was obtained using a 1:1 mixture of H2O and D2O leading to a HDO abundance close to 50%. The room temperature spectra recorded in the 50–720 cm−1 range cover most of the rotational band. The sensitivity of the recordings allows for lowering by three orders of magnitude the detectivity threshold of previous absorption studies in the region. Line centers are determined with a typical accuracy of 5 × 10−5 cm−1 for well-isolated lines. The combined line list of 8522 water lines is assigned to 9186 transitions of the nine stable water isotopologues (H2XO, HDXO, and D2XO with X = 16, 17, and 18). Regarding the HD16O isotopologue, a total of 2443 transitions are presently assigned while about 530 absorption transitions were available prior to our SOLEIL recordings. The comparison with the HITRAN list of HD16O transitions is discussed in detail. The obtained set of accurate HD16O transition frequencies is merged with literature sources to generate a set of 1121 accurate empirical rotation–vibration energies for the first five vibrational states (000), (010), (100), (020), and (001). The comparison to the previous dataset from an IUPAC task group illustrates a gain in the average energy accuracy by more than one order of magnitude. Based on these levels, a recommended list of transitions between the first five vibrational states is proposed for HD16O in the 0–4650 cm−1 frequency range. Full article
(This article belongs to the Special Issue Molecular Spectroscopy and Molecular Structure in Europe)
Show Figures

Graphical abstract

19 pages, 11319 KiB  
Article
The CH3D Absorption Spectrum Near 1.58 μm: Extended Line Lists and Rovibrational Assignments
by Ons Ben Fathallah, Anastasiya Lembei, Michael Rey, Didier Mondelain and Alain Campargue
Molecules 2024, 29(22), 5276; https://doi.org/10.3390/molecules29225276 - 8 Nov 2024
Viewed by 690
Abstract
Monodeuterated methane (CH3D) contributes greatly to absorption in the 1.58 μm methane transparency window. The spectrum is dominated by the 3ν2 band near 6430 cm−1, which is observed in natural methane and used for a number of planetary [...] Read more.
Monodeuterated methane (CH3D) contributes greatly to absorption in the 1.58 μm methane transparency window. The spectrum is dominated by the 3ν2 band near 6430 cm−1, which is observed in natural methane and used for a number of planetary applications, such as the determination of the D/H ratio. In this work, we analyze the CH3D spectrum recorded by high-sensitivity differential absorption spectroscopy in the 6099–6530 cm−1 region, both at room temperature and at 81 K. Following a first contribution to this topic by Lu et al., the room-temperature line list is elaborated (11,189 lines) and combined with the previous 81 K list (8962 lines) in order to derive about 4800 empirical lower-state energy values from the ratio of the line intensities measured at 81 K and 294 K (2T-method). Relying on the position and intensity agreements with the TheoReTS variational line list, about 2890 transitions are rovibrationally assigned to twenty bands, with fifteen of them being newly reported. Variational positions deviate from measurements by up to 2 cm−1, and the band intensities are found to be in good agreement with measurements. All the reported assignments are confirmed by Ground-State Combination Difference (GSCD) relations; i.e., all the upper-state energies (about 1370 in total) have coinciding determinations through several transitions (up to 8). The energy values, determined with a typical uncertainty of 10−3 cm−1, are compared to their empirical and variational counterparts. The intensity sum of the transitions assigned between 6190 and 6530 cm−1 represents 76.9 and 90.0% of the total experimental intensities at 294 K and 81 K, respectively. Full article
(This article belongs to the Special Issue Molecular Spectroscopy and Molecular Structure in Europe)
Show Figures

Graphical abstract

Back to TopTop