molecules-logo

Journal Browser

Journal Browser

Mass Spectroscopy in Chemical Biology

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Chemical Biology".

Deadline for manuscript submissions: closed (30 April 2019) | Viewed by 19963

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
Interests: drug discovery; antivirals; antibiotics; mass spectrometry; infectious diseases; metabolomics; lead discovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Collegues,

Mass spectrometry has been a major contributor to the advancement of all life science disciplines in the past two decades. This is particularly true for the young discipline of ‘chemical biology’, dedicated to deciphering cell biology with small molecule probes, and to translate those insights to novel therapeutic innovations. Mass spectrometry is a core technology to map molecular interactions in the cell, e.g., to elucidating the cellular targets of small molecules in chemoproteomic experiments, to map protein-protein interaction networks, to detect supramolecular complexes in their native state, or to capture enzymatic activity. Furthermore, quantitiative mass spectrometry is perfectly suited to capture global effects of external or internal stimuli on the cell in proteomics, primary and secondary metabolomics or lipidomics studies—with high temporal and spacial resolution. In this Special Issue, we would like to give an overview on the tremendous versatility and power of mass spectrometry to advance chemical biology. We seek for research studies reporting methodological advances, as well as applications of mass spectrometry, to solve chemical and biological problems.

Prof. Dr. Mark Mark Brönstrup
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mass spectrometry
  • chemical biology
  • chemoproteomics
  • metabolomics
  • natural products
  • target identification
  • drug discovery
  • assay development
  • mode-of-action

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

27 pages, 4390 KiB  
Article
Systematically Characterize the Anti-Alzheimer’s Disease Mechanism of Lignans from S. chinensis Based on In-Vivo Ingredient Analysis and Target-Network Pharmacology Strategy by UHPLC–Q-TOF-MS
by Mengying Wei, Yuanyuan Liu, Zifeng Pi, Shizhe Li, Mingxin Hu, Yang He, Kexin Yue, Tianshu Liu, Zhiqiang Liu, Fengrui Song and Zhongying Liu
Molecules 2019, 24(7), 1203; https://doi.org/10.3390/molecules24071203 - 27 Mar 2019
Cited by 26 | Viewed by 5349
Abstract
Lignans from Schisandra chinensis (Turcz.) Baill can ameliorate cognitive impairment in animals with Alzheimer’s disease (AD). However, the metabolism of absorbed ingredients and the potential targets of the lignans from S. chinensis in animals with AD have not been systematically investigated. Therefore, for [...] Read more.
Lignans from Schisandra chinensis (Turcz.) Baill can ameliorate cognitive impairment in animals with Alzheimer’s disease (AD). However, the metabolism of absorbed ingredients and the potential targets of the lignans from S. chinensis in animals with AD have not been systematically investigated. Therefore, for the first time, we performed an in-vivo ingredient analysis and implemented a target-network pharmacology strategy to assess the effects of lignans from S. chinensis in rats with AD. Ten absorbed prototype constituents and 39 metabolites were identified or tentatively characterized in the plasma of dosed rats with AD using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Based on the results of analysis of the effective constituents in vivo, the potential therapeutic mechanism of the effective constituents in the rats with AD was investigated using a target-network pharmacology approach and independent experimental validation. The results showed that the treatment effects of lignans from S. chinensis on cognitive impairment might involve the regulation of amyloid precursor protein metabolism, neurofibrillary tangles, neurotransmitter metabolism, inflammatory response, and antioxidant system. Overall, we identified the effective components of lignans in S. chinensis that can improve the cognitive impairment induced by AD and proposed potential therapeutic metabolic pathways. The results might serve as the basis for a fundamental strategy to explore effective therapeutic drugs to treat AD. Full article
(This article belongs to the Special Issue Mass Spectroscopy in Chemical Biology)
Show Figures

Graphical abstract

Review

Jump to: Research

29 pages, 5396 KiB  
Review
Gas-Phase Fragmentation of Cyclic Oligosaccharides in Tandem Mass Spectrometry
by Alexander O. Chizhov, Yury E. Tsvetkov and Nikolay E. Nifantiev
Molecules 2019, 24(12), 2226; https://doi.org/10.3390/molecules24122226 - 14 Jun 2019
Cited by 14 | Viewed by 5220
Abstract
Modern mass spectrometry, including electrospray and MALDI, is applied for analysis and structure elucidation of carbohydrates. Cyclic oligosaccharides isolated from different sources (bacteria and plants) have been known for decades and some of them (cyclodextrins and their derivatives) are widely used in drug [...] Read more.
Modern mass spectrometry, including electrospray and MALDI, is applied for analysis and structure elucidation of carbohydrates. Cyclic oligosaccharides isolated from different sources (bacteria and plants) have been known for decades and some of them (cyclodextrins and their derivatives) are widely used in drug design, as food additives, in the construction of nanomaterials, etc. The peculiarities of the first- and second-order mass spectra of cyclic oligosaccharides (natural, synthetic and their derivatives and modifications: cyclodextrins, cycloglucans, cyclofructans, cyclooligoglucosamines, etc.) are discussed in this minireview. Full article
(This article belongs to the Special Issue Mass Spectroscopy in Chemical Biology)
Show Figures

Graphical abstract

17 pages, 1861 KiB  
Review
Contributions of Mass Spectrometry to the Identification of Low Molecular Weight Molecules Able to Reduce the Toxicity of Amyloid-β Peptide to Cell Cultures and Transgenic Mouse Models of Alzheimer’s Disease
by Raluca Ştefănescu, Gabriela Dumitriṭa Stanciu, Andrei Luca, Ioana Cezara Caba, Bogdan Ionel Tamba and Cosmin Teodor Mihai
Molecules 2019, 24(6), 1167; https://doi.org/10.3390/molecules24061167 - 24 Mar 2019
Cited by 24 | Viewed by 8776
Abstract
Alzheimer’s Disease affects approximately 33 million people worldwide and is characterized by progressive loss of memory at the cognitive level. The formation of toxic amyloid oligomers, extracellular amyloid plaques and amyloid angiopathy in brain by amyloid beta peptides are considered a part of [...] Read more.
Alzheimer’s Disease affects approximately 33 million people worldwide and is characterized by progressive loss of memory at the cognitive level. The formation of toxic amyloid oligomers, extracellular amyloid plaques and amyloid angiopathy in brain by amyloid beta peptides are considered a part of the identified mechanism involved in disease pathogenesis. The optimal treatment approach leads toward finding a chemical compound able to form a noncovalent complex with the amyloid peptide thus blocking the process of amyloid aggregation. This direction gained an increasing interest lately, many studies demonstrating that mass spectrometry is a valuable method useful for the identification and characterization of such molecules able to interact with amyloid peptides. In the present review we aim to identify in the scientific literature low molecular weight chemical compounds for which there is mass spectrometric evidence of noncovalent complex formation with amyloid peptides and also there are toxicity reduction results which verify the effects of these compounds on amyloid beta toxicity towards cell cultures and transgenic mouse models developing Alzheimer’s Disease. Full article
(This article belongs to the Special Issue Mass Spectroscopy in Chemical Biology)
Show Figures

Figure 1

Back to TopTop