molecules-logo

Journal Browser

Journal Browser

Nanocomposite and Hybrid Nanomaterial Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Applied Chemistry".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 10681

Special Issue Editor


E-Mail Website
Guest Editor
Institute for Physical and Chemical Processes, IPCF-National Research Council, CNR, Bari Division, c/o Chemistry Department, University of Bari “Aldo Moro”, 70125 Bari, Italy
Interests: nanomaterials; colloidal nanoparticles; quantum dots; carbon dots; perovskite nanocrystals; hybrids; nanocomposites; optical properties; self assembly and nanocrystal organization; chemical functionalization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The growing demand for nanostructured materials with original chemical–physical and morphological properties has given hybrid materials and nanocomposites, consisting of organic and inorganic components interfaced at the nanoscale, a well-deserved recognition in materials science thanks to their extraordinary new properties and their multifunctional nature. Hybrid nanomaterials and nanocomposites are able both to synergistically combine the peculiar chemical–physical properties of their individual constituents and to give rise to collective properties due to their interaction at the nanoscale. Several parameters, including composition, concentration, morphology, etc., can be suitably modified to control the properties of nanohybrids and nanocomposites, also in relation to the different applications for which they can be designed. This issue aims to provide an overview of the applications of this fascinating class of materials in various application fields, ranging from sensing to optoelectronic and plasmonic applications, in the field of energy, smart coating, and control and reduction of environmental pollution.

Dr. Marinella Striccoli
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocomposites
  • hybrid nanosystems
  • nanoparticles
  • molecules
  • sensing
  • energy
  • plasmonic and photonics
  • environmental applications
  • smart coatings

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4607 KiB  
Article
The Role of Cerium Valence in the Conversion Temperature of H2Ti3O7 Nanoribbons to TiO2-B and Anatase Nanoribbons, and Further to Rutile
by Polona Umek, Michael Dürrschnabel, Leopoldo Molina-Luna, Srečo Škapin, Romana Cerc Korošec and Carla Bittencourt
Molecules 2023, 28(15), 5838; https://doi.org/10.3390/molecules28155838 - 3 Aug 2023
Viewed by 1227
Abstract
CeO2-TiO2 is an important mixed oxide due to its catalytic properties, particularly in heterogeneous photocatalysis. This study presents a straightforward method to obtain 1D TiO2 nanostructures decorated with CeO2 nanoparticles at the surface. As the precursor, we used [...] Read more.
CeO2-TiO2 is an important mixed oxide due to its catalytic properties, particularly in heterogeneous photocatalysis. This study presents a straightforward method to obtain 1D TiO2 nanostructures decorated with CeO2 nanoparticles at the surface. As the precursor, we used H2Ti3O7 nanoribbons prepared from sodium titanate nanoribbons by ion exchange. Two cerium sources with an oxidation state of +3 and +4 were used to obtain mixed oxides. HAADF–STEM mapping of the Ce4+-modified nanoribbons revealed a thin continuous layer at the surface of the H2Ti3O7 nanoribbons, while Ce3+ cerium ions intercalated partially between the titanate layers. The phase composition and morphology changes were monitored during calcination between 620 °C and 960 °C. Thermal treatment led to the formation of CeO2 nanoparticles on the surface of the TiO2 nanoribbons, whose size increased with the calcination temperature. The use of Ce4+ raised the temperature required for converting H2Ti3O7 to TiO2-B by approximately 200 °C, and the temperature for the formation of anatase. For the Ce3+ batch, the presence of cerium inhibited the conversion to rutile. Analysis of cerium oxidation states revealed the existence of both +4 and +3 in all calcined samples, regardless of the initial cerium oxidation state. Full article
(This article belongs to the Special Issue Nanocomposite and Hybrid Nanomaterial Applications)
Show Figures

Graphical abstract

16 pages, 5472 KiB  
Article
Preparation of Surface-Active Hyperbranched-Polymer-Encapsulated Nanometal as a Highly Efficient Cracking Catalyst for In Situ Combustion of Heavy Oil
by Ao Sun, Chenyang Yao, Lifeng Zhang, Yanmin Sun, Jun Nan, Houkai Teng, Jiazhong Zang, Lishan Zhou, Zhenzhong Fan and Qilei Tong
Molecules 2023, 28(14), 5328; https://doi.org/10.3390/molecules28145328 - 11 Jul 2023
Viewed by 1068
Abstract
In situ combustion of heavy oil is currently the most suitable thermal method that meets energy consumption and carbon dioxide emission requirements for heavy oil recovery. The combustion catalyst needs to perform multiple roles for application; it should be capable of catalyzing heavy [...] Read more.
In situ combustion of heavy oil is currently the most suitable thermal method that meets energy consumption and carbon dioxide emission requirements for heavy oil recovery. The combustion catalyst needs to perform multiple roles for application; it should be capable of catalyzing heavy oil combustion at high temperatures, as well as be able to migrate in the geological formation for injection. In this work, a hyperbranched polymer composite nanometal fluid was used as the injection vector for a heavy oil in situ combustion catalyst, which enabled the catalyst to rapidly migrate to the surface of the oil phase in porous media and promoted heavy oil cracking deposition at high temperatures. Platinum (Pt) nanoparticles encapsulated with cetyl-hyperbranched poly(amide-amine) (CPAMAM), with high interfacial activity, were synthesized by a facile phase-transfer method; the resulting material is called Pt@CPAMAM. Pt@CPAMAM has good dispersion, and as an aqueous solution, it can reduce the interfacial tension between heavy oil and water. As a catalyst, it can improve the conversion rate during the pyrolysis of heavy oil in a nitrogen atmosphere. The catalyst structure designed in this study is closer to that exhibited in practical geological formation applications, making it a potential method for preparing catalysts for use in heavy oil in situ combustion to resolve the problem of catalyst migration in the geological formation. Full article
(This article belongs to the Special Issue Nanocomposite and Hybrid Nanomaterial Applications)
Show Figures

Figure 1

14 pages, 7439 KiB  
Article
A Waterborne Epoxy Composite Coating with Smart Corrosion Resistance Based on 2-Phenylbenzimidazole-5-sulfonic Acid/Layered Double Hydroxide Composite
by Caiyou Ding, Jiongxin Wu, Yuan Liu, Xinxin Sheng, Xiaoling Cheng, Xiaoyan Xiong and Wenlin Zhao
Molecules 2023, 28(13), 5199; https://doi.org/10.3390/molecules28135199 - 4 Jul 2023
Cited by 8 | Viewed by 1248
Abstract
In this study, ZnAl-layered double hydroxide (ZnAl-LDH) was functionalized with 2-phenylbenzimidazole-5-sulfonic acid (PBSA) to prepare ZnAl-PBSA-LDH using a simple one-step method. The electrochemical impedance spectroscopy (EIS) result of the solution phase demonstrated excellent corrosion inhibition performance of ZnAl-PBSA-LDH. Subsequently, 0.6 wt.% ZnAl-PBSA-LDH with [...] Read more.
In this study, ZnAl-layered double hydroxide (ZnAl-LDH) was functionalized with 2-phenylbenzimidazole-5-sulfonic acid (PBSA) to prepare ZnAl-PBSA-LDH using a simple one-step method. The electrochemical impedance spectroscopy (EIS) result of the solution phase demonstrated excellent corrosion inhibition performance of ZnAl-PBSA-LDH. Subsequently, 0.6 wt.% ZnAl-PBSA-LDH with shielding effects and active inhibition was incorporated into the water-based epoxy (WEP) for preparing the high-performance anti-corrosion coating (6-ZPL/WEP). The EIS test illustrated that the 6-ZPL/WEP coating maintained a high low-frequency impedance modulus (|Z0.01 Hz|) after 30 days of immersion, which is nearly two orders of magnitude higher compared to that of the blank coating. These results demonstrated that ZnAl-PBSA-LDH could efficiently improve the corrosion resistance of the WEP coating. Therefore, this study introduces new insights into the use of layered double hydroxides (LDHs) in the domain of anti-corrosion. Full article
(This article belongs to the Special Issue Nanocomposite and Hybrid Nanomaterial Applications)
Show Figures

Graphical abstract

15 pages, 4039 KiB  
Article
Novel Hybrid Electrode Coatings Based on Conjugated Polyacid Ternary Nanocomposites for Supercapacitor Applications
by Sveta Ozkan, Lyudmila Tkachenko, Valeriy Petrov, Oleg Efimov and Galina Karpacheva
Molecules 2023, 28(13), 5093; https://doi.org/10.3390/molecules28135093 - 29 Jun 2023
Cited by 3 | Viewed by 1201
Abstract
Electrochemical behavior of novel electrode materials based on polydiphenylamine-2-carboxylic acid (PDPAC) binary and ternary nanocomposite coatings was studied for the first time. Nanocomposite materials were obtained in acidic or alkaline media using oxidative polymerization of diphenylamine-2-carboxylic acid (DPAC) in the presence of activated [...] Read more.
Electrochemical behavior of novel electrode materials based on polydiphenylamine-2-carboxylic acid (PDPAC) binary and ternary nanocomposite coatings was studied for the first time. Nanocomposite materials were obtained in acidic or alkaline media using oxidative polymerization of diphenylamine-2-carboxylic acid (DPAC) in the presence of activated IR-pyrolyzed polyacrylonitrile (IR-PAN-a) only or IR-PAN-a and single-walled carbon nanotubes (SWCNT). Hybrid electrodes are electroactive layers of stable suspensions of IR-PAN-a/PDPAC and IR-PAN-a/SWCNT/PDPAC nanocomposites in formic acid (FA) formed on the flexible strips of anodized graphite foil (AGF). Specific capacitances of electrodes depend on the method for the production of electroactive coatings. Electrodes specific surface capacitances Cs reach 0.129 and 0.161 F∙cm−2 for AGF/IR-PAN-a/PDPACac and AGF/IR-PAN-a/SWCNT/PDPACac, while for AGF/IR-PAN-a/PDPACalk and AGF/IR-PAN-a/SWCNT/PDPACalk Cs amount to 0.135 and 0.151 F∙cm−2. Specific weight capacitances Cw of electrodes with ternary coatings reach 394, 283, 180 F∙g−1 (AGF/IR-PAN-a/SWCNT/PDPACac) and 361, 239, 142 F∙g−1 (AGF/IR-PAN-a/SWCNT/PDPACalk) at 0.5, 1.5, 3.0 mA·cm−2 in an aprotic electrolyte. Such hybrid electrodes with electroactive nanocomposite coatings are promising as a cathode material for SCs. Full article
(This article belongs to the Special Issue Nanocomposite and Hybrid Nanomaterial Applications)
Show Figures

Graphical abstract

18 pages, 6411 KiB  
Article
Synthesis and Characterization of Silver and Graphene Nanocomposites and Their Antimicrobial and Photocatalytic Potentials
by Sidra Batool Malik, Javed Iqbal Saggu, Asma Gul, Banzeer Ahsan Abbasi, Javed Iqbal, Saboora Waris, Yousef A. Bin Jardan and Wadie Chalgham
Molecules 2022, 27(16), 5184; https://doi.org/10.3390/molecules27165184 - 15 Aug 2022
Cited by 19 | Viewed by 2619
Abstract
Microbial pathogens and bulk amounts of industrial toxic wastes in water are an alarming situation to humans and a continuous threat to aquatic life. In this study, multifunctional silver and graphene nanocomposites (Ag)1−x(GNPs)x [25% (x = 0.25), 50% (x = [...] Read more.
Microbial pathogens and bulk amounts of industrial toxic wastes in water are an alarming situation to humans and a continuous threat to aquatic life. In this study, multifunctional silver and graphene nanocomposites (Ag)1−x(GNPs)x [25% (x = 0.25), 50% (x = 0.50) and 75% (x = 0.75) of GNPs] were synthesized via ex situ approach. Further, the synthesized nanocomposites were explored for their physicochemical characteristics, such as vibrational modes (Raman spectroscopic analysis), optical properties (UV visible spectroscopic analysis), antibacterial and photocatalytic applications. We investigated the antimicrobial activity of silver and graphene nanocomposites (Ag-GNPs), and the results showed that Ag-GNPs nanocomposites exhibit remarkably improved antimicrobial activity (28.78% (E. coli), 31.34% (S. aureus) and 30.31% (P. aeruginosa) growth inhibition, which might be due to increase in surface area of silver nanoparticles (AgNPs)). Furthermore, we investigated the photocatalytic activity of silver (AgNPs) and graphene (GNPs) nanocomposites in varying ratios. Interestingly, the Ag-GNPs nanocomposites show improved photocatalytic activity (78.55% degradation) as compared to AgNPs (54.35%), which can be an effective candidate for removing the toxicity of dyes. Hence, it is emphatically concluded that Ag-GNPs hold very active behavior towards the decolorization of dyes and could be a potential candidate for the treatment of wastewater and possible pathogenic control over microbes. In the future, we also recommend different other in vitro biological and environmental applications of silver and graphene nanocomposites. Full article
(This article belongs to the Special Issue Nanocomposite and Hybrid Nanomaterial Applications)
Show Figures

Figure 1

14 pages, 7037 KiB  
Article
Synthesis and Characterization of Diketopyrrolopyrrole-Based Aggregation-Induced Emission Nanoparticles for Bioimaging
by Geonho Lee, Jongwook Park, Seong Hyun Jang, Sang Yoon Lee, Jihyun Seong, Jae Woong Jung, Kyobum Kim, Tae Gyu Hwang and Jun Choi
Molecules 2022, 27(9), 2984; https://doi.org/10.3390/molecules27092984 - 6 May 2022
Cited by 3 | Viewed by 2250
Abstract
Conventional fluorescent dyes have the property of decreasing fluorescence due to aggregation-caused quenching effects at high concentrations, whereas aggregation-induced emission dyes have the property of increasing fluorescence as they aggregate with each other. In this study, diketopyrrolopyrrole-based long-wavelength aggregation-induced emission dyes were used [...] Read more.
Conventional fluorescent dyes have the property of decreasing fluorescence due to aggregation-caused quenching effects at high concentrations, whereas aggregation-induced emission dyes have the property of increasing fluorescence as they aggregate with each other. In this study, diketopyrrolopyrrole-based long-wavelength aggregation-induced emission dyes were used to prepare biocompatible nanoparticles suitable for bioimaging. Aggregation-induced emission nanoparticles with the best morphology and photoluminescence intensity were obtained through a fast, simple preparation method using an ultrasonicator. The optimally prepared nanoparticles from 3,6-bis(4-((E)-4-(bis(40-(1,2,2-triphenylvinyl)-[1,10-biphenyl]-4-yl)amino)styryl)phenyl)-2,5-dihexyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DP-R2) with two functional groups having aggregation-induced emission properties and additional donating groups at the end of the triphenylamine groups were considered to have the greatest potential as a fluorescent probe for bioimaging. Furthermore, it was found that the tendency for aggregation-induced emission, which was apparent for the dye itself, became much more marked after the dyes were incorporated within nanoparticles. While the photoluminescence intensities of the dyes were observed to decrease rapidly over time, the prepared nanoparticles encapsulated within the biocompatible polymers maintained their initial optical properties very well. Lastly, when the cell viability test was conducted, excellent biocompatibility was demonstrated for each of the prepared nanoparticles. Full article
(This article belongs to the Special Issue Nanocomposite and Hybrid Nanomaterial Applications)
Show Figures

Graphical abstract

Back to TopTop