Multimodal Interaction in Education

Special Issue Editor


E-Mail Website
Guest Editor
1. Faculty of Educational Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
2. Faculty of Graduate Studies, Al-Qasemi Academic College of Education, Baqa P.O. Box 124, Israel
Interests: education; technology in education; qualitative methods in education; quantitative methods in education

Special Issue Information

Dear Colleagues,

Multimodal learning and teaching are believed to enrich teachers' instructions, motivating students to learn about, interact and engage with the learning topic. This has a positive impact on various aspects of the learning process and related achievements.

For this Special Issue, we are seeking submissions that address various educational phases, disciplines, and educational aspects (cognitive, affective, psychological, behavioural, social, meta, etc.). Potential topics include (but are not limited to):

  • Multimodal understanding of the subject matter
  • Students’ perceptions of multimodal learning
  • Teachers' use of multimodal methods
  • Multimodal curriculum
  • Multimodal tools in education

Prof. Dr. Wajeeh Daher
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Multimodal Technologies and Interaction is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • multimodal teaching
  • multimodal learning
  • multimodal curriculum
  • multimedia in the classroom
  • multimodal tools

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 6501 KiB  
Article
Leveraging Interactive Evolutionary Computation to Induce Serendipity in Informal Learning
by Satoko Inoue, Emmanuel Ayedoun, Hiroshi Takenouchi and Masataka Tokumaru
Multimodal Technol. Interact. 2024, 8(11), 103; https://doi.org/10.3390/mti8110103 - 12 Nov 2024
Viewed by 422
Abstract
Serendipitous learning, characterized by the discovery of new insights and unexpected connections, is recognized as a valuable educational experience that stimulates critical thinking and self-regulated learning. While there have been limited efforts to develop serendipity-oriented recommender systems in education, these systems often fall [...] Read more.
Serendipitous learning, characterized by the discovery of new insights and unexpected connections, is recognized as a valuable educational experience that stimulates critical thinking and self-regulated learning. While there have been limited efforts to develop serendipity-oriented recommender systems in education, these systems often fall short in supporting learners’ agency, that is, the sense of ownership and control over their learning journey. In this paper, we introduce an Interactive Evolutionary Computation (IEC)-driven recommender system designed to empower learners by granting them control over their learning experiences while offering recommendations that are both novel and unexpected yet aligned with their interests. Our proposed system leverages an Interactive Genetic Algorithm in conjunction with Knowledge Graphs to dynamically recommend learning content, with a focus on the history of scientific discoveries. We conducted both numerical simulations and experimental evaluations to assess the effectiveness of our content optimization algorithm and the impact of our approach on inducing serendipity in informal learning environments. The results indicate that a significant number of participants found certain recommended learning materials to be engaging and surprising, providing evidence that our system has the potential to facilitate serendipitous learning experiences within informal learning contexts. Full article
(This article belongs to the Special Issue Multimodal Interaction in Education)
Show Figures

Graphical abstract

12 pages, 4085 KiB  
Article
Multimodal Approach of Improving Spatial Abilities
by Tamás Balla, Róbert Tóth, Marianna Zichar and Miklós Hoffmann
Multimodal Technol. Interact. 2024, 8(11), 99; https://doi.org/10.3390/mti8110099 - 7 Nov 2024
Viewed by 384
Abstract
Spatial abilities, which are sources of our capacity to understand visual and spatial relations among objects, as well as the abilities to generate, retain, retrieve, and transform well-structured visual information are important in several scientific fields and workplaces. Various tests have already been [...] Read more.
Spatial abilities, which are sources of our capacity to understand visual and spatial relations among objects, as well as the abilities to generate, retain, retrieve, and transform well-structured visual information are important in several scientific fields and workplaces. Various tests have already been prepared to measure these abilities, including the Mental Cutting Test, which is considered the golden standard of measurement. However, much less attention is paid to how to prepare students for this test, as well as how to develop these skills most effectively. The purpose of this research is to study the multimodal approach of improving these skills and its effectiveness, i.e., the mixed use of 2D tools similar to the paper-based test, and 3D tools, including augmented reality and web-based interfaces in training students for those kinds of tasks. We want to demonstrate and prove with tests that multimodal modes of training can significantly affect the effectiveness of developing these skills. Moreover, through appropriately combining these methods, they can reinforce each other to form a multimodal approach, which is the most effective way for developing spatial skills and improving students’ performance related to the Mental Cutting Test. Full article
(This article belongs to the Special Issue Multimodal Interaction in Education)
Show Figures

Graphical abstract

29 pages, 15101 KiB  
Article
Multimodal Embodiment Research of Oral Music Traditions: Electromyography in Oud Performance and Education Research of Persian Art Music
by Stella Paschalidou
Multimodal Technol. Interact. 2024, 8(5), 37; https://doi.org/10.3390/mti8050037 - 7 May 2024
Viewed by 1255
Abstract
With the recent advent of research focusing on the body’s significance in music, the integration of physiological sensors in the context of empirical methodologies for music has also gained momentum. Given the recognition of covert muscular activity as a strong indicator of musical [...] Read more.
With the recent advent of research focusing on the body’s significance in music, the integration of physiological sensors in the context of empirical methodologies for music has also gained momentum. Given the recognition of covert muscular activity as a strong indicator of musical intentionality and the previously ascertained link between physical effort and various musical aspects, electromyography (EMG)—signals representing muscle activity—has also experienced a noticeable surge. While EMG technologies appear to hold good promise for sensing, capturing, and interpreting the dynamic properties of movement in music, which are considered innately linked to artistic expressive power, they also come with certain challenges, misconceptions, and predispositions. The paper engages in a critical examination regarding the utilisation of muscle force values from EMG sensors as indicators of physical effort and musical activity, particularly focusing on (the intuitively expected link to) sound levels. For this, it resides upon empirical work, namely practical insights drawn from a case study of music performance (Persian instrumental music) in the context of a music class. The findings indicate that muscle force can be explained by a small set of (six) statistically significant acoustic and movement features, the latter captured by a state-of-the-art (full-body inertial) motion capture system. However, no straightforward link to sound levels is evident. Full article
(This article belongs to the Special Issue Multimodal Interaction in Education)
Show Figures

Figure 1

Back to TopTop