Anti-Infective Agents

A special issue of Pharmaceuticals (ISSN 1424-8247).

Deadline for manuscript submissions: closed (31 March 2010) | Viewed by 69670

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacognosy and The National Center for the Development of Natural Products, University of Mississippi, Oxford, MI, USA
Interests: natural products; antiinfectives; anticancer agents; NMR spectroscopy; marine ecology; synthesis of natural products; biosynthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Despite the tremendous progress in human medicine, infectious diseases represent one of the greatest challenges to mankind in the 21st century. According to WHO, infectious diseases account for nearly a third of global deaths. AIDS, malaria, tuberculosis and respiratory infections were among the top eight leading causes of death in 2004. The burden of infectious diseases falls particularly on the less developed countries due to the relative unavailability of medicines and the emergence of widespread drug resistance. In developing countries, a high infectious disease burden commonly co-exists with rapid emergence and spread of microbial resistance. The growing threat of emerging diseases such as SARS and influenza A (H1N1) has served as a wake-up call to public health services, pharmaceutical industry and academia.
Because the evolution of drug resistance is likely to compromise every drug in time, research on new anti-infective agents must be continued and all possible strategies should be explored. Besides small molecules from medicinal chemistry, natural products are still major sources of innovative therapeutic agents for various conditions, including infectious diseases.
This special issue welcomes research articles and comprehensive reviews addressing the discovery and/or development of anti-infective agents.

Prof. Dr. Paul Cos
Prof. Dr. Mark Hamann
Guest Editor

Keywords

  • anti-infectives
  • biofilm
  • bacterial virulence
  • oxidative stress
  • antibacterial
  • antifungal
  • antiparasitic
  • antiviral
  • screening
  • small molecules
  • natural products

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

385 KiB  
Article
Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species
by Marie Stéphanie Goka Chekem, Paul Keilah Lunga, Jean De Dieu Tamokou, Jules Roger Kuiate, Pierre Tane, Gerard Vilarem and Muriel Cerny
Pharmaceuticals 2010, 3(9), 2900-2909; https://doi.org/10.3390/ph3092900 - 1 Sep 2010
Cited by 48 | Viewed by 13331
Abstract
The essential oil of the aerial part (leaves, flowers and stem) of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were [...] Read more.
The essential oil of the aerial part (leaves, flowers and stem) of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were α-terpinene (51.3%), p-cymene (23.4%) and p-mentha-1,8-diène (15.3%). The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile. Full article
(This article belongs to the Special Issue Anti-Infective Agents)
Show Figures

Graphical abstract

174 KiB  
Article
Effect of Different Metal Ions on the Biological Properties of Cefadroxil
by Sayed H. Auda, Ilka Knütter, Beate Bretschneider, Matthias Brandsch, Yahya Mrestani, Cornelia Große and Reinhard H. H. Neubert
Pharmaceuticals 2009, 2(3), 184-193; https://doi.org/10.3390/ph2030184 - 15 Dec 2009
Cited by 11 | Viewed by 12906
Abstract
The effect of different metal ions on the intestinal transport and the antibacterial activity of cefadroxil [(6R,7R)-7-{[(2R)-2-amino-2-(4-hydroxyphenyl)acetyl]amino}-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid] was investigated. The [14C]Gly-Sar uptake via PEPT1 was inhibited by Zn2+ and Cu2+ treatment in [...] Read more.
The effect of different metal ions on the intestinal transport and the antibacterial activity of cefadroxil [(6R,7R)-7-{[(2R)-2-amino-2-(4-hydroxyphenyl)acetyl]amino}-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid] was investigated. The [14C]Gly-Sar uptake via PEPT1 was inhibited by Zn2+ and Cu2+ treatment in a concentration-dependent manner (Ki values 107 ± 23 and 19 ± 5 μM, respectively). Kinetic analysis showed that the Kt of Gly-Sar uptake was increased 2-fold in the presence of zinc sulphate (150 μM) whereas the Vmax value were not affected suggesting that zinc ions inhibited Gly-Sar uptake by PEPT1 in a competitively manner. Ni2+ exhibited moderate inhibitory effect, whereas Co2+, Mg2+, Al3+ ions showed no inhibitory effect on Gly-Sar uptake via PEPT1. Subsequently, we examined the effect of Zn2+ and Al3+ ions on the transepithelial transport of cefadroxil across Caco-2 cells cultured on permeable supports. The results showed that zinc ions inhibited the transepithelial flux of cefadroxil at Caco-2 cell monolayers while Al3+ ions had no effect. The interaction of cephalosporins with the metal ions could suggest negative effects of some metal ions on the clinical aspects of small intestinal peptide and drug transport. Finally, the effect of Zn2+, Cu2+ and Al3+ ions on the antibacterial activity of cefadroxil was tested. It was found that there is no significant difference between the activity of cefadroxil and the cefadroxil metal ion complexes studied against the investigated sensitive bacterial species. Full article
(This article belongs to the Special Issue Anti-Infective Agents)
Show Figures

Figure 1

Review

Jump to: Research

194 KiB  
Review
Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen Candida glabrata
by Michael Tscherner, Tobias Schwarzmüller and Karl Kuchler
Pharmaceuticals 2011, 4(1), 169-186; https://doi.org/10.3390/ph4010169 - 11 Jan 2011
Cited by 48 | Viewed by 13029
Abstract
Candida glabrata is a major opportunistic human fungal pathogen causing superficial as well as systemic infections in immunocompromised individuals and several other patient cohorts. C. glabrata represents the second most prevalent cause of candidemia and a better understanding of its virulence and drug [...] Read more.
Candida glabrata is a major opportunistic human fungal pathogen causing superficial as well as systemic infections in immunocompromised individuals and several other patient cohorts. C. glabrata represents the second most prevalent cause of candidemia and a better understanding of its virulence and drug resistance mechanisms is thus of high medical relevance. In contrast to the diploid dimorphic pathogen C. albicans, whose ability to undergo filamentation is considered a major virulence trait, C. glabrata has a haploid genome and lacks the ability to switch to filamentous growth. A major impediment for the clinical therapy of C. glabrata infections is its high intrinsic resistance to several antifungal drugs, especially azoles. Further, the development of antifungal resistance, particularly during prolonged and prophylactic therapies is diminishing efficacies of therapeutic interventions. In addition, C. glabrata harbors a large repertoire of adhesins involved in the adherence to host epithelia. Interestingly, genome plasticity, phenotypic switching or the remarkable ability to persist and survive inside host immune cells further contribute to the pathogenicity of C. glabrata. In this comprehensive review, we want to emphasize and discuss the mechanisms underlying virulence and drug resistance of C. glabrata, and discuss its ability to escape from the host immune surveillance or persist inside host cells. Full article
(This article belongs to the Special Issue Anti-Infective Agents)
Show Figures

560 KiB  
Review
Cobalt Complexes as Antiviral and Antibacterial Agents
by Eddie L. Chang, Christa Simmers and D. Andrew Knight
Pharmaceuticals 2010, 3(6), 1711-1728; https://doi.org/10.3390/ph3061711 - 26 May 2010
Cited by 262 | Viewed by 29573
Abstract
Metal ion complexes are playing an increasing role in the development of antimicrobials. We review here the antimicrobial properties of cobalt coordination complexes in oxidation state 3+. In addition to reviewing the cobalt complexes containing polydentate donor ligands, we also focus on the [...] Read more.
Metal ion complexes are playing an increasing role in the development of antimicrobials. We review here the antimicrobial properties of cobalt coordination complexes in oxidation state 3+. In addition to reviewing the cobalt complexes containing polydentate donor ligands, we also focus on the antimicrobial activity of the homoleptic [Co(NH3)6]3+ ion. Full article
(This article belongs to the Special Issue Anti-Infective Agents)
Show Figures

Figure 1

Back to TopTop