Development and Application of Polymer Scaffolds, 2nd Volume

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 3450

Special Issue Editors

Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
Interests: polymer scaffolds; additive manufacturing; tissue engineering; biomaterials; nanocomposites; functional materials; biological properties; mechanical properties; degradation properties; drug release
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
Interests: microfluidic and biochips; MEMS (microelectro-mechanical systems); microsensors; micro-nano machining; precision manufacturing; biological manufacturing; biomedical instruments; environmental monitorin
Special Issues, Collections and Topics in MDPI journals
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
Interests: 3D/4D printing; biofabrication; shape memory; bone scaffold; biomaterials; function materials; polymers; nanocomposites
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical Engineering, Guangxi University, Nanning, China
Interests: intelligent manufacturing; additive manufacturing; 3D/4D printing; laser manufacturing; biomanufacturing; flexible electronics; bionic robot; intelligent monitoring and control
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

I am honored to accept the invitation of the Polymers Editorial Office to act as a Guest Editor for a new Special Issue, "Development and Application of Polymer Scaffolds, 2nd Volume".

Polymers and their composites have become the most widely used biomaterials in the field of tissue engineering and regenerative medicine due to their biocompatibility, adjustable physical, chemical, and biological properties, good processing performance, etc. Their uses include tissue engineering scaffolds, wound dressings, vascular stents, nerve guidance conduits, drug release carriers, etc. Their material forms include scaffolds, hydrogels, fibers, microspheres, etc. The preparation technology involved in their production includes traditional preparation process and additive manufacturing technology or their combination.

This Special Issue aims to highlight research progress on polymers and their composites, especially in tissue engineering and regenerative medicine, including but not limited to the following aspects: material and structure design, functionalization, preparation, characterization, performance evaluation, and biomedical application.

We sincerely invite you to submit your paper to this Special Issue and are looking forward to sharing your outstanding work with peers around the world.

Dr. Wang Guo
Prof. Dr. Hui You
Dr. Pei Feng
Prof. Dr. Yu Long
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer-based biomaterials
  • tissue engineering
  • additive manufacturing
  • 3D Printing
  • 4D Printing
  • bioprinting
  • cell printing
  • organ and organoid printing
  • biomimetic materials and structures

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 12494 KiB  
Article
Development of High-Aspect-Ratio Soft Magnetic Microarrays for Magneto-Mechanical Actuation via Field-Induced Injection Molding
by Da Seul Shin, Jin Wook Park, Chang Woo Gal, Jina Kim, Woo Seok Yang, Seon Yeong Yang, Min Jik Kim, Ho Jae Kwak, Sang Min Park and Jong Hyun Kim
Polymers 2024, 16(21), 3003; https://doi.org/10.3390/polym16213003 - 25 Oct 2024
Viewed by 586
Abstract
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined [...] Read more.
Magnetorheological elastomers (MREs) are in demand in the field of high-tech microindustries and nanoindustries such as biomedical applications and soft robotics due to their exquisite magneto-sensitive response. Among various MRE applications, programmable actuators are emerging as promising soft robots because of their combined advantages of excellent flexibility and precise controllability in a magnetic system. Here, we present the development of magnetically programmable soft magnetic microarray actuators through field-induced injection molding using MREs, which consist of styrene-ethylene/butylene styrene (SEBS) elastomer and carbonyl iron powder (CIP). The ratio of the CIP/SEBS matrix was designed to maximize the CIP fraction based on a critical solids loading. Further, as part of the design of the magnetization distribution in micropillar arrays, the magnetorheological response of the molten composites was analyzed using the static and dynamic viscosity results for both the on and off magnetic states, which reflected the particle dipole interaction and subsequent particle alignment during the field-induced injection molding process. To develop a high-aspect-ratio soft magnetic microarray, X-ray lithography was applied to prepare the sacrificial molds with a height-to-width ratio of 10. The alignment of the CIP was designed to achieve a parallel magnetic direction along the micropillar columns, and consequently, the micropillar arrays successfully achieved the uniform and large bending actuation of up to approximately 81° with an applied magnetic field. This study suggests that the injection molding process offers a promising manufacturing approach to build a programmable soft magnetic microarray actuator. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Figure 1

20 pages, 6241 KiB  
Article
Enhanced Synthesis of Poly(1,4-butanediol itaconate) via Box–Behnken Design Optimization
by Magdalena Miętus, Mateusz Cegłowski, Tomasz Gołofit and Agnieszka Gadomska-Gajadhur
Polymers 2024, 16(19), 2708; https://doi.org/10.3390/polym16192708 - 25 Sep 2024
Viewed by 604
Abstract
At present, there are too few organ and tissue donors. Due to the needs of the medical market, scientists are seeking new solutions. Those can be found in tissue engineering by synthesizing synthetic cell scaffolds. We have decided to synthesize a potential UV-crosslinked [...] Read more.
At present, there are too few organ and tissue donors. Due to the needs of the medical market, scientists are seeking new solutions. Those can be found in tissue engineering by synthesizing synthetic cell scaffolds. We have decided to synthesize a potential UV-crosslinked bio-ink for 3D printing, poly(1,4-butanediol itaconate), in response to emerging needs. Diol polyesters are commonly investigated for their use in tissue engineering. However, itaconic acid makes it possible to post-modify the obtained polymer via UV-crosslinking. This work aims to optimize the synthesis of poly(1,4-butanediol itaconate) in the presence of a catalyst, zinc acetate, without using any toxic reactant. The experiments used itaconic acid and 1,4-butanediol using the Box–Behnken mathematical planning method. The input variables were the amount of the catalyst used, as well as the time and temperature of the synthesis. The optimized output variables were the percentage conversion of carboxyl groups, the percentage of unreacted C=C bonds, and the product’s visual and viscosity analysis. The significance of the varying synthesis parameters was determined in each statistical model. The optimum conditions were as follows: amount of catalyst 0.3%nCOOH, reaction time 4 h, and temperature 150 °C. The temperature had the most significant impact on the product characteristics, mainly due to side reactions. Experimentally developed models of the polymerization process enable the effective synthesis of a polymer “tailor-made” for a specific application. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Graphical abstract

26 pages, 12676 KiB  
Article
Improved Recovery of Complete Spinal Cord Transection by a Plasma-Modified Fibrillar Scaffold
by Diana Osorio-Londoño, Yessica Heras-Romero, Luis B. Tovar-y-Romo, Roberto Olayo-González and Axayácatl Morales-Guadarrama
Polymers 2024, 16(8), 1133; https://doi.org/10.3390/polym16081133 - 18 Apr 2024
Cited by 1 | Viewed by 1364
Abstract
Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for [...] Read more.
Complete spinal cord injury causes an irreversible disruption in the central nervous system, leading to motor, sensory, and autonomic function loss, and a secondary injury that constitutes a physical barrier preventing tissue repair. Tissue engineering scaffolds are presented as a permissive platform for cell migration and the reconnection of spared tissue. Iodine-doped plasma pyrrole polymer (pPPy-I), a neuroprotective material, was applied to polylactic acid (PLA) fibers and implanted in a rat complete spinal cord transection injury model to evaluate whether the resulting composite implants provided structural and functional recovery, using magnetic resonance (MR) imaging, diffusion tensor imaging and tractography, magnetic resonance spectroscopy, locomotion analysis, histology, and immunofluorescence. In vivo, MR studies evidenced a tissue response to the implant, demonstrating that the fibrillar composite scaffold moderated the structural effects of secondary damage by providing mechanical stability to the lesion core, tissue reconstruction, and significant motor recovery. Histologic analyses demonstrated that the composite scaffold provided a permissive environment for cell attachment and neural tissue guidance over the fibers, reducing cyst formation. These results supply evidence that pPPy-I enhanced the properties of PLA fibrillar scaffolds as a promising treatment for spinal cord injury recovery. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Graphical abstract

Back to TopTop