polymers-logo

Journal Browser

Journal Browser

Applications of Electrospun Nanofibers

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Fibers".

Deadline for manuscript submissions: closed (10 May 2022) | Viewed by 48869

Special Issue Editor


E-Mail
Guest Editor
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
Interests: biopolymeric films; wound healing; electrospun nanofibers; chitosan/hyaluronic acid materials for wound healing; organic synthesis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Depending on the application of electrospun nanofibers, polymers may require certain properties (biocompatibility, conductivity, carrier mobility, mechanical strength, etc.). The final nanofibers present high porosity and have a high surface-to-volume ratio. The relationship between the final properties of polymer nanofibers and their origin, structure, and encapsulated compounds is focused into one question: the proper transfer of these unique properties to practical utility. Therefore, chemists, bioengineers, physicists, and materials science specialists targeting the development of new polymer nanofibers, study of their characteristics, and their applications are welcome to contribute their valuable research to this Special Issue.

Topics of interest for this Special Issue include but are not limited to the following:

  • Design, development, and characterization of polymer nanofibers;
  • Application and testing of final novel nanofibers;
  • Other topics highlighting the concepts and techniques providing advances in the field of the polymer nanofibers.

We aim that this Issue’s articles will further inspire researchers in their own work.

Dr. Andreea-Teodora Iacob
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electrospinning
  • electrospun nanofibers
  • design and characterization
  • formulation and application of electrospun nanofibers
  • polymers in electrospinning
  • chemical properties
  • physical properties
  • polymer chain structure
  • polymeric materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3041 KiB  
Article
Functionalized Electrospun Scaffold–Human-Muscle-Derived Stem Cell Construct Promotes In Vivo Neocartilage Formation
by Lina Jankauskaite, Mantas Malinauskas, Lauryna Aukstikalne, Lauryna Dabasinskaite, Augustinas Rimkunas, Tomas Mickevicius, Alius Pockevičius, Edvinas Krugly, Dainius Martuzevicius, Darius Ciuzas, Odeta Baniukaitiene and Arvydas Usas
Polymers 2022, 14(12), 2498; https://doi.org/10.3390/polym14122498 - 19 Jun 2022
Cited by 6 | Viewed by 2821
Abstract
Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, [...] Read more.
Polycaprolactone (PCL) is a non-cytotoxic, completely biodegradable biomaterial, ideal for cartilage tissue engineering. Despite drawbacks such as low hydrophilicity and lack of functional groups necessary for incorporating growth factors, it provides a proper environment for different cells, including stem cells. In our study, we aimed to improve properties of scaffolds for better cell adherence and cartilage regeneration. Thus, electrospun PCL–scaffolds were functionalized with ozone and loaded with TGF-β3. Together, human-muscle-derived stem cells (hMDSCs) were isolated and assessed for their phenotype and potential to differentiate into specific lineages. Then, hMDSCs were seeded on ozonated (O) and non-ozonated (“naïve” (NO)) scaffolds with or without protein and submitted for in vitro and in vivo experiments. In vitro studies showed that hMDSC and control cells (human chondrocyte) could be tracked for at least 14 days. We observed better proliferation of hMDSCs in O scaffolds compared to NO scaffolds from day 7 to day 28. Protein analysis revealed slightly higher expression of type II collagen (Coll2) on O scaffolds compared to NO on days 21 and 28. We detected more pronounced formation of glycosaminoglycans in the O scaffolds containing TGF-β3 and hMDSC compared to NO and scaffolds without TGF-β3 in in vivo animal experiments. Coll2-positive extracellular matrix was observed within O and NO scaffolds containing TGF-β3 and hMDSC for up to 8 weeks after implantation. These findings suggest that ozone-treated, TGF-β3-loaded scaffold with hMDSC is a promising tool in neocartilage formation. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

20 pages, 1940 KiB  
Article
Fabrication of Biocompatible Electrospun Poly(ε-caprolactone)/Gelatin Nanofibers Loaded with Pinus radiata Bark Extracts for Wound Healing Applications
by Jessica Borges-Vilches, Irem Unalan, Katherina Fernández and Aldo R. Boccaccini
Polymers 2022, 14(12), 2331; https://doi.org/10.3390/polym14122331 - 9 Jun 2022
Cited by 14 | Viewed by 3411
Abstract
In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and [...] Read more.
In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and in vitro biocompatibility. All electrospun nanofibers showed smooth, uniform, and bead-free surfaces. Their functional groups were detected by ATR-FTIR spectroscopy, and their total phenol content was measured by a Folin–Ciocalteu assay. With PE addition, the electrospun nanofibers exhibited an increase in their wettability and degradation rates over time and a decrease in their tensile stress values from 20 ± 4 to 8 ± 2 MPa for PCL/GEL and PCL/GEL/0.36%PE samples, respectively. PE was also released from the fibrous mats in a rather controlled fashion. The PCL/GEL/0.18%PE and PCL/GEL/0.36%PE electrospun nanofibers inhibited bacterial activity at around 6 ± 0.1% and 23 ± 0.3% against E. coli and 14 ± 0.1% and 18 ± 0.2% against S. aureus after 24 h incubation, respectively. In vitro cell studies showed that PE-loaded electrospun nanofibers enhanced HaCaT cell growth, attachment, and proliferation, favoring cell migration towards the scratch area in the wound healing assay and allowing a complete wound closure after 72 h treatment. These findings suggested that PE-loaded electrospun nanofibers are promising materials for antibiotic-free dressings for wound healing applications. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

15 pages, 4994 KiB  
Article
Core-Sheath Electrospun Nanofibers Based on Chitosan and Cyclodextrin Polymer for the Prolonged Release of Triclosan
by Safa Ouerghemmi, Stéphanie Degoutin, Mickael Maton, Nicolas Tabary, Frédéric Cazaux, Christel Neut, Nicolas Blanchemain and Bernard Martel
Polymers 2022, 14(10), 1955; https://doi.org/10.3390/polym14101955 - 11 May 2022
Cited by 9 | Viewed by 2696
Abstract
This work focuses on the manufacture of core-sheath nanofibers (NFs) based on chitosan (CHT) as sheath and cyclodextrin polymer (PCD) as core and loaded with triclosan (TCL). In parallel, monolithic NFs consisting of blended CHT-PCD and TCL were prepared. Nanofibers were characterized by [...] Read more.
This work focuses on the manufacture of core-sheath nanofibers (NFs) based on chitosan (CHT) as sheath and cyclodextrin polymer (PCD) as core and loaded with triclosan (TCL). In parallel, monolithic NFs consisting of blended CHT-PCD and TCL were prepared. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier Transform Infrared spectroscopy (FTIR). SEM displayed the morphology of NFs and the structure of the nanowebs, while TEM evidenced the core-sheath structure of NFs prepared by coaxial electrospinning. The core diameters and sheath thicknesses were found dependent on respective flow rates of both precursor solutions. Nanofibers stability and TCL release in aqueous medium were studied and correlated with the antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the release profiles of TCL and therefore the antibacterial activity were directly related to the type of nanofibers. In the case of monolithic nanofibers, the NFs matrix was composed of polyelectrolyte complex (PEC formed between CHT and PCD) and resulted in a prolonged release of TCL and a sustained antibacterial effect. In the case of core-sheath NFs, the PEC was formed only at the core-sheath interface, leading to less stable NFs and therefore to a faster release of TCL, and to a less extended antibacterial activity compared to monolithic ones. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Graphical abstract

17 pages, 3414 KiB  
Article
Incorporation of Mycobacteriophage Fulbright into Polycaprolactone Electrospun Nanofiber Wound Dressing
by Hari Kotturi, Charmaine Lopez-Davis, Sadegh Nikfarjam, Cameron Kedy, Micah Byrne, Vishal Barot and Morshed Khandaker
Polymers 2022, 14(10), 1948; https://doi.org/10.3390/polym14101948 - 11 May 2022
Cited by 9 | Viewed by 2999
Abstract
The Genus Mycobacterium includes pathogens known to cause disease in mammals such as tuberculosis (Mycobacterium tuberculosis) and skin infections (M. abscessus). M. smegmatis is a model bacterium that can cause opportunistic infections in human tissues and, rarely, a respiratory [...] Read more.
The Genus Mycobacterium includes pathogens known to cause disease in mammals such as tuberculosis (Mycobacterium tuberculosis) and skin infections (M. abscessus). M. smegmatis is a model bacterium that can cause opportunistic infections in human tissues and, rarely, a respiratory disease. Due to the emergence of multidrug-resistant bacteria, phage therapy is potentially an alternative way of treating these bacterial infections. As bacteriophages are specific to their bacterial host, it ensures that the normal flora is unharmed. Fulbright is a mycobacteriophage that infects the host bacteria M. smegmatis. The main goal of this study is to incorporate Mycobacteriophage Fulbright into a polycaprolactone (PCL) nanofiber and test its antimicrobial effect against the host bacteria, M. smegmatis. Stability tests conducted over 7 days showed that the phage titer does not decrease when in contact with PCL, making it a promising vehicle for phage delivery. Antimicrobial assays showed that PCL_Fulbright effectively reduces bacterial concentration after 24 h of contact. In addition, when stored at −20 °C, the phage remains viable for up to eleven months in the fiber. Fulbright addition on the nanofibrous mats resulted in an increase in water uptake and decrease in the mechanical properties (strength and Young’s modulus) of the membranes, indicating that the presence of phage Fulbright can greatly enhance the physical and mechanical properties of the PCL. Cytotoxicity assays showed that PCL_Fulbright is not cytotoxic to Balbc/3T3 mouse embryo fibroblast cell lines; thus, phage-incorporated PCL is a promising alternative to antibiotics in treating skin infections. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

14 pages, 2507 KiB  
Article
Cuprous Oxide Nanoparticles: Synthesis, Characterization, and Their Application for Enhancing the Humidity-Sensing Properties of Poly(dioctylfluorene)
by Muhammad Tahir, Muhammad Zeb, Alamgeer, Shahid Hussain, Mahidur R. Sarker, Dil Nawaz Khan, Fazal Wahab and Sawal Hamid Md Ali
Polymers 2022, 14(8), 1503; https://doi.org/10.3390/polym14081503 - 7 Apr 2022
Cited by 13 | Viewed by 3500
Abstract
In this paper, we report on the synthesis—via the wet chemical precipitation route method—and thin film characteristics of inorganic semiconductor, cuprous oxide (Cu2O) nanoparticles, for their potential application in enhancing the humidity-sensing properties of semiconducting polymer poly(9,9-dioctylfluorene) (F8). For morphological analysis [...] Read more.
In this paper, we report on the synthesis—via the wet chemical precipitation route method—and thin film characteristics of inorganic semiconductor, cuprous oxide (Cu2O) nanoparticles, for their potential application in enhancing the humidity-sensing properties of semiconducting polymer poly(9,9-dioctylfluorene) (F8). For morphological analysis of the synthesized Cu2O nanoparticles, transmission electron microscope (TEM) and scanning electron microscope (SEM) micrographs are studied to investigate the texture, distribution, shape, and sizes of Cu2O crystallites. The TEM image of the Cu2O nanoparticles exhibits somewhat non-uniform distribution with almost uniform shape and size having an average particle size of ≈24 ± 2 nm. Fourier transformed infrared (FTIR) and X-ray diffraction (XRD) spectra are studied to validate the formation of Cu2O nanoparticles. Additionally, atomic force microscopy (AFM) is performed to analyze the surface morphology of polymer-inorganic (F8-Cu2O) nanocomposites thin film to see the grain sizes, mosaics, and average surface roughness. In order to study the enhancement in sensing properties of F8, a hybrid organic–inorganic (F8-Cu2O) surface-type humidity sensor Ag/F8-Cu2O/Ag is fabricated by employing F8 polymer as an active matrix layer and Cu2O nanoparticles as a dopant. The Ag/F8-Cu2O/Ag device is prepared by spin coating a 10:1 wt% solution of F8-Cu2O nanocomposite on pre-patterned silver (Ag) electrodes on glass. The inter-electrode gap (≈5 μm) between Ag is developed by photolithography. To study humidity sensing, the Ag/F8-Cu2O/Ag device is characterized by measuring its capacitance (C) as a function of relative humidity (%RH) at two different frequencies (120 Hz and 1 kHz). The device exhibits a broad humidity sensing range (27–86%RH) with shorter response time and recovery time, i.e., 9 s and 8 s, respectively. The present results show significant enhancement in the humidity-sensing properties as compared to our previously reported results of Ag/F8/Ag sensor wherein the humidity sensing range was 45–78%RH with 15 s and 7 s response and recovery times, respectively. The improvement in the humidity-sensing properties is attributed to the potential use of Cu2O nanoparticles, which change the hydrophobicity, surface to volume ratio of Cu2O nanoparticles, as well as modification in electron polarizability and polarity of the F8 matrix layer. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

15 pages, 3308 KiB  
Article
Electrospun PVA/CuONPs/Bitter Gourd Nanofibers with Improved Cytocompatibility and Antibacterial Properties: Application as Antibacterial Wound Dressing
by Muhammad Nauman Sarwar, Hina Ghulam Ali, Sana Ullah, Kentaro Yamashita, Aiman Shahbaz, Umair Nisar, Motahira Hashmi and Ick-Soo Kim
Polymers 2022, 14(7), 1361; https://doi.org/10.3390/polym14071361 - 27 Mar 2022
Cited by 21 | Viewed by 3667
Abstract
Antibacterial and cyto-compatible tricomponent composite electrospun nanofibers comprised of polyvinyl alcohol (PVA), copper II oxide nanoparticles (CuONPs), and Momordica charantia (bitter gourd, MC) extract were examined for their potential application as an effective wound dressing. Metallic nanoparticles have a wide range of applications [...] Read more.
Antibacterial and cyto-compatible tricomponent composite electrospun nanofibers comprised of polyvinyl alcohol (PVA), copper II oxide nanoparticles (CuONPs), and Momordica charantia (bitter gourd, MC) extract were examined for their potential application as an effective wound dressing. Metallic nanoparticles have a wide range of applications in biomedical engineering because of their excellent antibacterial properties; however, metallic NPs have some toxic effects as well. The green synthesis of nanoparticles is undergoing development with the goal of avoiding toxicity. The aim of adding Momordica charantia extract was to reduce the toxic effects of copper oxide nanoparticles as well as to impart antioxidant properties to electrospun nanofibers. Weight ratios of PVA and MC extract were kept constant while the concentration of copper oxide was optimized to obtain good antibacterial properties with reduced toxicity. Samples were characterized for their morphological properties, chemical interactions, crystalline structures, elemental analyses, antibacterial activity, cell adhesion, and toxicity. All samples were found to have uniform morphology without any bead formation, while an increase in diameters was observed as the CuO concentration was increased in nanofibers. All samples exhibited antibacterial properties; however, the sample with CuO concentration of 0.6% exhibited better antibacterial activity. It was also observed that nanofibrous mats exhibited excellent cytocompatibility with fibroblast (NIH3T3) cells. The mechanical properties of nanofibers were slightly improved due to the addition of nanoparticles. By considering the excellent results of nanofibrous mats, they can therefore be recommended for wound dressing applications. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

13 pages, 2539 KiB  
Article
Gelatin Blends Enhance Performance of Electrospun Polymeric Scaffolds in Comparison to Coating Protocols
by Maria Bikuna-Izagirre, Javier Aldazabal and Jacobo Paredes
Polymers 2022, 14(7), 1311; https://doi.org/10.3390/polym14071311 - 24 Mar 2022
Cited by 18 | Viewed by 3599
Abstract
The electrospinning of hybrid polymers is a versatile fabrication technique which takes advantage of the biological properties of natural polymers and the mechanical properties of synthetic polymers. However, the literature is scarce when it comes to comparisons of blends regarding coatings and the [...] Read more.
The electrospinning of hybrid polymers is a versatile fabrication technique which takes advantage of the biological properties of natural polymers and the mechanical properties of synthetic polymers. However, the literature is scarce when it comes to comparisons of blends regarding coatings and the improvements offered thereby in terms of cellular performance. To address this, in the present study, nanofibrous electrospun scaffolds of polycaprolactone (PCL), their coating and their blend with gelatin were compared. The morphology of nanofibrous scaffolds was analyzed under field emission scanning electron microscopy (FE-SEM), indicating the influence of the presence of gelatin. The scaffolds were mechanically tested with tensile tests; PCL and PCL gelatin coated scaffolds showed higher elastic moduli than PCL/gelatin meshes. Viability of mouse embryonic fibroblasts (MEF) was evaluated by MTT assay, and cell proliferation on the scaffold was confirmed by fluorescence staining. The positive results of the MTT assay and cell growth indicated that the scaffolds of PCL/gelatin excelled in comparison to other scaffolds, and may serve as good candidates for tissue engineering applications. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Graphical abstract

8 pages, 4429 KiB  
Article
Comparative Study of Metal Substrates for Improved Carbonization of Electrospun PAN Nanofibers
by Jan Lukas Storck, Martin Wortmann, Bennet Brockhagen, Natalie Frese, Elise Diestelhorst, Timo Grothe, Christian Hellert and Andrea Ehrmann
Polymers 2022, 14(4), 721; https://doi.org/10.3390/polym14040721 - 13 Feb 2022
Cited by 10 | Viewed by 2875
Abstract
Carbon nanofibers are used for a broad range of applications, from nano-composites to energy storage devices. They are typically produced from electrospun poly(acrylonitrile) nanofibers by thermal stabilization and carbonization. The nanofiber mats are usually placed freely movable in an oven, which leads to [...] Read more.
Carbon nanofibers are used for a broad range of applications, from nano-composites to energy storage devices. They are typically produced from electrospun poly(acrylonitrile) nanofibers by thermal stabilization and carbonization. The nanofiber mats are usually placed freely movable in an oven, which leads to relaxation of internal stress within the nanofibers, making them thicker and shorter. To preserve their pristine morphology they can be mechanically fixated, which may cause the nanofibers to break. In a previous study, we demonstrated that sandwiching the nanofiber mats between metal sheets retained their morphology during stabilization and incipient carbonization at 500 °C. Here, we present a comparative study of stainless steel, titanium, copper and silicon substrate sandwiches at carbonization temperatures of 500 °C, 800 °C and 1200 °C. Helium ion microscopy revealed that all metals mostly eliminated nanofiber deformation, whereas silicone achieved the best results in this regard. The highest temperatures for which the metals were shown to be applicable were 500 °C for silicon, 800 °C for stainless steel and copper, and 1200 °C for titanium. Fourier transform infrared and Raman spectroscopy revealed a higher degree of carbonization and increased crystallinity for higher temperatures, which was shown to depend on the substrate material. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

10 pages, 3408 KiB  
Article
High-Performance IGZO Nanowire-Based Field-Effect Transistors with Random-Network Channels by Electrospun PVP Nanofiber Template Transfer
by Ki-Woong Park and Won-Ju Cho
Polymers 2022, 14(3), 651; https://doi.org/10.3390/polym14030651 - 8 Feb 2022
Cited by 5 | Viewed by 2736
Abstract
A random network of indium–gallium–zinc oxide (IGZO) nanowires was fabricated by electrospun-polyvinylpyrrolidone (PVP)-nanofiber template transfer. Conventional electrospun nanofibers have been extensively studied owing to their flexibility and inherently high surface-to-volume ratio. However, solution-based IGZO nanofibers have critical issues such as poor electrical properties, [...] Read more.
A random network of indium–gallium–zinc oxide (IGZO) nanowires was fabricated by electrospun-polyvinylpyrrolidone (PVP)-nanofiber template transfer. Conventional electrospun nanofibers have been extensively studied owing to their flexibility and inherently high surface-to-volume ratio. However, solution-based IGZO nanofibers have critical issues such as poor electrical properties, reliability, and uniformity. Furthermore, high-temperature calcination, which is essential for vaporizing the polymer matrix, hinders their applications for flexible electronics. Therefore, sputter-based IGZO nanowires were obtained in this study using electrospun PVP nanofibers as an etching mask to overcome the limitations of conventional electrospun IGZO nanofibers. Field-effect transistors (FETs) were fabricated using two types of channels, that is, the nanofiber template-transferred IGZO nanowires and electrospun IGZO nanofibers. A comparison of the transmittance, adhesion, electrical properties, reliability, and uniformity of these two channels in operation revealed that the nanofiber template-transferred IGZO nanowire FETs demonstrated higher transmittance, stronger substrate adhesion, superior electrical performance, and operational reliability and uniformity compared to the electrospun IGZO nanofiber FETs. The proposed IGZO nanowires fabricated by PVP nanofiber template transfer are expected to be a promising channel structure that overcomes the limitations of conventional electrospun IGZO nanofibers. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

16 pages, 3489 KiB  
Article
The High Flux of Superhydrophilic-Superhydrophobic Janus Membrane of cPVA-PVDF/PMMA/GO by Layer-by-Layer Electrospinning for High Efficiency Oil-Water Separation
by Han Wu, Jia Shi, Xin Ning, Yun-Ze Long and Jie Zheng
Polymers 2022, 14(3), 621; https://doi.org/10.3390/polym14030621 - 5 Feb 2022
Cited by 30 | Viewed by 4495
Abstract
A simple and novel strategy of superhydrophilic-superhydrophobic Janus membrane was provided here to deal with the increasingly serious oil-water separation problem, which has a very bad impact on environmental pollution and resource recycling. The Janus membrane of cPVA-PVDF/PMMA/GO with opposite hydrophilic and hydrophobic [...] Read more.
A simple and novel strategy of superhydrophilic-superhydrophobic Janus membrane was provided here to deal with the increasingly serious oil-water separation problem, which has a very bad impact on environmental pollution and resource recycling. The Janus membrane of cPVA-PVDF/PMMA/GO with opposite hydrophilic and hydrophobic properties was prepared by layer-by-layer electrospinning. The structure of the Janus membrane is as follows: firstly, the mixed solution of polyvinylidene fluoride (PVDF), polymethylmethacrylate (PMMA) and graphene oxide (GO) was electrospun to form a hydrophobic layer, then polyvinyl alcohol (PVA) nanofiber was coated onto the hydrophobic membrane by layer-by-layer electrospinning to form a composite membrane, and finally, the composite membrane was crosslinked to obtain a Janus membrane. The addition of GO can significantly improve the hydrophobicity, mechanical strength and stability of the Janus membrane. In addition, the prepared Janus membrane still maintained good oil-water separation performance and its separation efficiency almost did not decrease after many oil-water separation experiments. The flux in the process of oil-water separation can reach 1909.9 L m−2 h−1, and the separation efficiency can reach 99.9%. This not only proves the separation effect of the nanocomposite membrane, but also shows its high stability and recyclability. The asymmetric Janus membrane shows good oil-water selectivity, which gives Janus membrane broad application prospects in many fields. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

14 pages, 2578 KiB  
Article
Electrochemical Behavior of Inductively Sintered Al/TiO2 Nanocomposites Reinforced by Electrospun Ceramic Nanofibers
by Hany S. Abdo, Ubair Abdus Samad, Mohamed S. Abdo, Hend I. Alkhammash and Muhammad Omer Aijaz
Polymers 2021, 13(24), 4319; https://doi.org/10.3390/polym13244319 - 9 Dec 2021
Cited by 14 | Viewed by 2440
Abstract
This study is focuses on the investigation of the effect of using TiO2 short nanofibers as a reinforcement of an Al matrix on the corrosion characteristics of the produced nanocomposites. The TiO2 ceramic nanofibers used were synthesized via electrospinning by sol-gel [...] Read more.
This study is focuses on the investigation of the effect of using TiO2 short nanofibers as a reinforcement of an Al matrix on the corrosion characteristics of the produced nanocomposites. The TiO2 ceramic nanofibers used were synthesized via electrospinning by sol-gel process, then calcinated at a high temperature to evaporate the residual polymers. The fabricated nanocomposites contain 0, 1, 3 and 5 wt.% of synthesized ceramic nanofibers (TiO2). Powder mixtures were mixed for 1 h via high-energy ball milling in a vacuum atmosphere before being inductively sintered through a high-frequency induction furnace at 560 °C for 6 min. The microstructure of the fabricated samples was studied by optical microscope and field emission scanning electron microscope (FESEM) before and after corrosion studies. Corrosion behavior of the sintered samples was evaluated by both electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques (PPT) in 3.5% NaCl solution for one hour and 24-h immersion times. The results show that even though the percentage of ceramic nanofibers added negatively control corrosion resistance, it is still possible to increase resistance against corrosion for the fabricated nanocomposite by more than 75% in the longer exposure time periods. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Figure 1

15 pages, 3107 KiB  
Article
Electrospun Structural Hybrids of Acyclovir-Polyacrylonitrile at Acyclovir for Modifying Drug Release
by He Lv, Shiri Guo, Gaoyi Zhang, Wanli He, Yonghui Wu and Deng-Guang Yu
Polymers 2021, 13(24), 4286; https://doi.org/10.3390/polym13244286 - 7 Dec 2021
Cited by 78 | Viewed by 4494
Abstract
In traditional pharmaceutics, drug–crystalline nanoparticles and drug–polymer composites are frequently explored for their ability to modify drug release profiles. In this study, a novel sort of hybrid with a coating of acyclovir crystalline nanoparticles on acyclovir-polyacrylonitrile composites was fabricated using modified, coaxial electrospinning [...] Read more.
In traditional pharmaceutics, drug–crystalline nanoparticles and drug–polymer composites are frequently explored for their ability to modify drug release profiles. In this study, a novel sort of hybrid with a coating of acyclovir crystalline nanoparticles on acyclovir-polyacrylonitrile composites was fabricated using modified, coaxial electrospinning processes. The developed acyclovir-polyacrylonitrile at the acyclovir nanohybrids was loaded with various amounts of acyclovir, which could be realized simply by adjusting the sheath fluid flow rates. Compared with the electrospun composite nanofibers from a single-fluid blending process, the nanohybrids showed advantages of modifying the acyclovir release profiles in the following aspects: (1) the initial release amount was more accurately and intentionally controlled; (2) the later sustained release was nearer to a zero-order kinetic process; and (3) the release amounts at different stages could be easily allocated by the sheath fluid flow rate. X-ray diffraction results verified that the acyclovir nanoparticles were in a crystalline state, and Fourier-transform infrared spectra verified that the drug acyclovir and the polymer polyacrylonitrile had a good compatibility. The protocols reported here could pave the way for developing new types of functional nanostructures. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Graphical abstract

14 pages, 3553 KiB  
Article
Electrospun Poly(methyl methacrylate)/TiO2 Composites for Photocatalytic Water Treatment
by Olya Stoilova, Nevena Manolova and Iliya Rashkov
Polymers 2021, 13(22), 3923; https://doi.org/10.3390/polym13223923 - 13 Nov 2021
Cited by 11 | Viewed by 2245
Abstract
Electrospinning was successfully used for the one-step fabrication of poly(methyl methacrylate) (PMMA) fibers loaded with an inorganic photocatalyst—titanium oxide (TiO2). By tuning the PMMA/TiO2 ratio and the electrospinning conditions (applied voltage, needle tip-to-collector distance, and flow rates), PMMA/TiO2 composites [...] Read more.
Electrospinning was successfully used for the one-step fabrication of poly(methyl methacrylate) (PMMA) fibers loaded with an inorganic photocatalyst—titanium oxide (TiO2). By tuning the PMMA/TiO2 ratio and the electrospinning conditions (applied voltage, needle tip-to-collector distance, and flow rates), PMMA/TiO2 composites with selected organic/inorganic ratios, tailored designs, and targeted properties were obtained. The morphology of the electrospun composites was affected by the amount of TiO2 incorporated into the PMMA fibers. In addition, the inorganic photocatalyst had an impact on the wettability, thermal stability, and optical properties of the electrospun composites. In particular, the surface wettability of the composites was strongly influenced by UV light irradiation and from hydrophobic became superhydrophilic. Moreover, PMMA/TiO2 composites had enhanced tensile strength in comparison with those of bare PMMA mats. The electrospun PMMA/TiO2 composites showed excellent photocatalytic efficiency against the model organic pollutant—methylene blue—which is very promising for the future development of membranes that are highly efficacious for photocatalytic water treatment. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 25724 KiB  
Review
A Meta-Analysis of Wearable Contact Lenses for Medical Applications: Role of Electrospun Fiber for Drug Delivery
by Hamed Hosseinian, Samira Hosseini, Sergio O. Martinez-Chapa and Mazhar Sher
Polymers 2022, 14(1), 185; https://doi.org/10.3390/polym14010185 - 3 Jan 2022
Cited by 6 | Viewed by 5058
Abstract
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring [...] Read more.
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications. Full article
(This article belongs to the Special Issue Applications of Electrospun Nanofibers)
Show Figures

Graphical abstract

Back to TopTop