Enzyme Production Using Industrial and Agricultural By-Products

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Biological Processes and Systems".

Deadline for manuscript submissions: 10 May 2025 | Viewed by 4447

Special Issue Editors


E-Mail Website
Guest Editor
Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
Interests: biofuels; enzyme immobilization; magnetic particles; bioprocesses
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Basic and Environmental Sciences, Engineering School of Lorena, Universidade de São Paulodisabled, Sao Paulo, Brazil
Interests: biomass conversion; bioenergy; biochar; lignin chemistry and applications; nanolignin biocomposites waste valorization; biorefinery

Special Issue Information

Dear Colleagues,

It is well known that the global enzyme market continues to exhibit significant growth and is a pivotal component of various industries, ranging from pharmaceuticals and food processing to biofuel production and environmental remediation. One notable avenue for optimizing enzyme production is the utilization of industrial and agricultural by-products. These often-overlooked resources can be repurposed to not only lower the overall cost of enzyme production but also align with sustainable practices. By harnessing these by-products, we reduce waste, minimize environmental impacts, and enhance resource efficiency. Integrating these resources into enzyme production processes requires interdisciplinary cooperation and innovative technologies, which represents a transformative step toward establishing a circular bioeconomy. Therefore, we would like to invite you to submit original research or a review paper to this Special Issue of Processes entitled “Enzyme Production Using Industrial and Agricultural By-Products”. The topics of interest for this Special Issue include, but are not limited to, the following:

  • Fermentative processes valuing industrial and agricultural by-products;
  • Technical and economic analysis of biorefineries;
  • Novel enzyme characterization and applications;
  • Batch and continuous cultivation for enzyme production;
  • Enzymatic bioreactor design;

Dr. Heitor Bento
Dr. Ana Karine F. Carvalho
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biorefinery
  • waste valorization
  • economic analysis
  • solid fermentation
  • submerged fermentation
  • fungal enzymes
  • cellulolytic enzymes
  • lipases
  • amylases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 3488 KiB  
Article
Cost-Effective Optimization of the Transfructosylation Activity of an Invertase Produced from Aspergillus carbonarius PC-4 Using Pineapple Crown and Determination of Its Biochemical Properties
by Ryhára Dias Batista, Gustavo Carvalho do Nascimento, Nayara Bezerra Carvalho, Paula Candido Leite, Rodrigo Correa Basso, Sergio Andres Villalba Morales, Michelle da Cunha Abreu Xavier, Rafael Firmani Perna and Alex Fernando de Almeida
Processes 2024, 12(10), 2255; https://doi.org/10.3390/pr12102255 - 16 Oct 2024
Viewed by 642
Abstract
Fructooligosaccharides are prebiotic sugars that are widely used in the production of functional foods, which can be produced enzymatically by the transfructosylation reaction of sucrose. This work aimed to optimize the production of an invertase with high transfructosylation activity from Aspergillus carbonarius PC-4 [...] Read more.
Fructooligosaccharides are prebiotic sugars that are widely used in the production of functional foods, which can be produced enzymatically by the transfructosylation reaction of sucrose. This work aimed to optimize the production of an invertase with high transfructosylation activity from Aspergillus carbonarius PC-4 using pineapple crown as the inducer substrate and evaluate its biochemical properties. The culture medium was optimized using a Plackett–Burman experimental design and a central composite rotatable design, resulting in a maximum transfructosylation activity of 65.33 U/mL at 72 h of cultivation. The cultivation parameters were Yp/s = 1070.75 U/g and PP = 2771.48 U/h, which showed an increase of 5.2-fold in the enzyme produced. The optimum temperature (50 °C) and pH (5.0) for the enzymatic activity were obtained by a CCR design. The enzyme showed a half-life of 60 min at 40 °C. In conclusion, the invertase produced from A. carbonarius PC-4 using agro-industrial waste (pineapple crown) and an inorganic nitrogen source (ammonium nitrate) exhibits high transfructosylation activity that can be used as a potential source for the production of fructooligosaccharides. Full article
(This article belongs to the Special Issue Enzyme Production Using Industrial and Agricultural By-Products)
Show Figures

Figure 1

12 pages, 1766 KiB  
Article
Optimization of Cellulase Production from Agri-Industrial Residues by Aspergillus terreus NIH2624
by Elen Ayumi Kadoguchi, Josman Velasco, Silvio Silvério da Silva, Avinash P. Ingle, Fernando Segato and Anuj Kumar Chandel
Processes 2024, 12(10), 2169; https://doi.org/10.3390/pr12102169 - 5 Oct 2024
Viewed by 735
Abstract
The objective of this study was to assess the cellulase production of four fungi: Aspergillus terreus NIH2624, Aspergillus clavatus NRRL1, Aspergillus versicolor CBS583.65 and Aspergillus phoenicis ATCC3157, under submerged cultivation conditions. When these fungi were cultured in shake flasks using Mandels and Weber’s [...] Read more.
The objective of this study was to assess the cellulase production of four fungi: Aspergillus terreus NIH2624, Aspergillus clavatus NRRL1, Aspergillus versicolor CBS583.65 and Aspergillus phoenicis ATCC3157, under submerged cultivation conditions. When these fungi were cultured in shake flasks using Mandels and Weber’s minimal medium with 1% sugarcane bagasse as a carbon source and 1.8 g/L of rice bran extract as a nitrogen source, A. terreus showed maximum cellulase production (filter paper activity (FPase) 3.35 U/mL; carboxymethyl cellulase activity (CMCase) 1.69 U/mL). Consequently, A. terreus was selected for the optimization study for cellulase production. Among the different tested carbon sources, A. terreus showed higher CMCase activity when it was cultivated on delignified sugarcane bagasse (1.64 U/mL) and higher FPase activity on sugarcane straw (7.95 U/mL). Regarding the nitrogen sources, the maximum FPase activity was observed when using rice bran (FPase, 8.90 U/mL) and soybean meal (FPase, 9.63 U/mL). The optimized fermentation medium (minimal medium with delignified sugarcane bagasse and rice bran as carbon and nitrogen sources, respectively) resulted in an enzymatic cocktail mainly composed of xylanases, with a maximum activity of 1701.85 U/mL for beechwood xylan, 77.12 U/mL for endoglucanase and 21.02 U/mL for cellobiohydrolase. Additionally, the enzymatic cocktail showed efficient activities for β-glucosidase, β-xylanase, arabinofuranosidase and lytic polysaccharide monoxygenases (LPMOs). This cellulase enzyme solution has the potential to efficiently hydrolyze lignocellulosic biomass, producing second-generation sugars in biorefineries. Full article
(This article belongs to the Special Issue Enzyme Production Using Industrial and Agricultural By-Products)
Show Figures

Graphical abstract

11 pages, 4514 KiB  
Article
Enzymatic Pretreatment of Slaughterhouse Wastewater: Application of Whole Lipolytic Cells of Rhizopus oryzae Produced from Residual Vegetable Oil
by Willian S. M. Reis, Heitor B. S. Bento, Ana K. F. Carvalho and Ernandes B. Pereira
Processes 2024, 12(3), 500; https://doi.org/10.3390/pr12030500 - 28 Feb 2024
Viewed by 1047
Abstract
This study assessed the application of whole lipolytic cells in the pretreatment of slaughterhouse wastewater to reduce its lipid content. The fungal biomass of Rhizopus oryzae was evaluated in the hydrolysis of slaughterhouse wastewater containing high lipid concentrations, focusing on the biomass’s concentration [...] Read more.
This study assessed the application of whole lipolytic cells in the pretreatment of slaughterhouse wastewater to reduce its lipid content. The fungal biomass of Rhizopus oryzae was evaluated in the hydrolysis of slaughterhouse wastewater containing high lipid concentrations, focusing on the biomass’s concentration and the effect of using an emulsifier and surfactant. The use of the whole-cells lipase of Rhizopus oryzae grown in a residual vegetable oil medium proved effective in the hydrolysis of slaughterhouse wastewater, generating concentrations of free fatty acids (FFA) ranging from 40.36 to 90.14 mM. The action of lipase in the hydrolysis of slaughterhouse residues indicated its effectiveness in pretreating lipid-rich liquid residues, potentially boosting the microbiota of this anaerobic treatment. The results showed that lipase activity without surfactant exhibited a similar performance to that of Triton X-100 in the hydrolysis of liquid residues. However, the combination of lipase and surfactant could represent a promising strategy to optimize free fatty acid production from slaughterhouse residues, strengthening anaerobic treatment processes and potentially enhancing the overall efficiency of waste management systems. Full article
(This article belongs to the Special Issue Enzyme Production Using Industrial and Agricultural By-Products)
Show Figures

Figure 1

14 pages, 2129 KiB  
Article
Xylanase Production by Cellulomonas phragmiteti Using Lignocellulosic Waste Materials
by Kata Buda, Tünde Fekete, Ornella M. Ontañon, Eleonora Campos and Csaba Fehér
Processes 2024, 12(2), 258; https://doi.org/10.3390/pr12020258 - 25 Jan 2024
Viewed by 1479
Abstract
Lignocellulosic biomass holds promise as a renewable feedstock for various applications, but its efficient conversion requires cost-effective degradation strategies. The main objective of this study was to investigate the effect of the growth conditions of Cellulomonas phragmiteti in the production of (hemi)cellulosic supernatants. [...] Read more.
Lignocellulosic biomass holds promise as a renewable feedstock for various applications, but its efficient conversion requires cost-effective degradation strategies. The main objective of this study was to investigate the effect of the growth conditions of Cellulomonas phragmiteti in the production of (hemi)cellulosic supernatants. To meet this aim, different lignocellulosic residues were used as carbon sources for growth using defined mineral or nutritive culture media. Cell-free culture supernatants with xylanolytic activity were produced in all the conditions evaluated, but the highest xylanase activity (15.3 U/mL) was achieved in Luria–Bertani (LB) medium containing 1% waste paper. Under these conditions, almost negligible β-glucosidase, cellobiohydrolase, β-xylosidase, and α-arabinofuranosidase activity was detected. The xylanolytic supernatant showed tolerance to salt and displayed maximal catalytic efficiency at pH 6 and 45 °C, along with good activity in the ranges of 45–55 °C and pH 5–8. As it showed good stability at 45 °C, the supernatant was employed for the hydrolysis of birchwood xylan (50 g/L) under optimal conditions, releasing 10.7 g/L xylose in 72 h. Thus, C. phragmiteti was found to produce a xylanolytic enzymatic supernatant efficiently by utilizing the cheap and abundant lignocellulosic residue of waste paper, and the produced supernatant has promising attributes for industrial applications. Full article
(This article belongs to the Special Issue Enzyme Production Using Industrial and Agricultural By-Products)
Show Figures

Graphical abstract

Back to TopTop