remotesensing-logo

Journal Browser

Journal Browser

Remote and Proximal Sensing for Precision Agriculture and Viticulture II

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Remote Sensing in Agriculture and Vegetation".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 1020

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Remote and proximal sensing are the two most common techniques concerning the acquisition of information about an object or any phenomenon without physical contact with the object. Remote sensing is widely tied to the use of satellite, airborne or UAV platforms using multi- or hyperspectral imagery. In terms of proximal sensing, the sensor is close to the object and is installed on platforms ranging from handheld, fixed installations, or robotics and tractor-embedded sensors. The types of sensors range from simple RGB or grey-level cameras to multispectral and hyperspectral high-resolution imaging systems or even thermographic cameras.

Associated with plant growth conditions and phenotyping techniques, remote and proximal sensing are able to provide information on nutrient deficiency, biotic stress such as pests and diseases as well as abiotic stresses, allowing precision agriculture and viticulture practices.

For this Special Issue, we welcome the submission of papers on both fundamental and applied research relating on Remote and Proximal Sensing for Precision Agriculture and Viticulture, combining spectral, spatial and temporal information based on multi- and hyperspectral imagery with the capabilities of management-oriented crop simulation models. We also invite papers dedicated to new sensors that can be used in agriculture, aiming at better management of crops, and methods for better crop management and a more respectful treatment of the environment.

This is the second edition of this Special Issue series. For more information on the first edition, please see: https://www.mdpi.com/journal/remotesensing/special_issues/Proximal_Sensing_for_Agriculture

Dr. Frédéric Cointault
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • remote sensing
  • proximal sensing
  • precision agriculture and viticulture
  • image acquisition
  • image processing
  • multi- and hyperspectral data and sensors

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3655 KiB  
Article
Investigating the Role of Cover-Crop Spectra for Vineyard Monitoring from Airborne and Spaceborne Remote Sensing
by Michael Williams, Niall G. Burnside, Matthew Brolly and Chris B. Joyce
Remote Sens. 2024, 16(21), 3942; https://doi.org/10.3390/rs16213942 - 23 Oct 2024
Viewed by 597
Abstract
The monitoring of grape quality parameters within viticulture using airborne remote sensing is an increasingly important aspect of precision viticulture. Airborne remote sensing allows high volumes of spatial consistent data to be collected with improved efficiency over ground-based surveys. Spectral data can be [...] Read more.
The monitoring of grape quality parameters within viticulture using airborne remote sensing is an increasingly important aspect of precision viticulture. Airborne remote sensing allows high volumes of spatial consistent data to be collected with improved efficiency over ground-based surveys. Spectral data can be used to understand the characteristics of vineyards, including the characteristics and health of the vines. Within viticultural remote sensing, the use of cover-crop spectra for monitoring is often overlooked due to the perceived noise it generates within imagery. However, within viticulture, the cover crop is a widely used and important management tool. This study uses multispectral data acquired by a high-resolution uncrewed aerial vehicle (UAV) and Sentinel-2 MSI to explore the benefit that cover-crop pixels could have for grape yield and quality monitoring. This study was undertaken across three growing seasons in the southeast of England, at a large commercial wine producer. The site was split into a number of vineyards, with sub-blocks for different vine varieties and rootstocks. Pre-harvest multispectral UAV imagery was collected across three vineyard parcels. UAV imagery was radiometrically corrected and stitched to create orthomosaics (red, green, and near-infrared) for each vineyard and survey date. Orthomosaics were segmented into pure cover-cropuav and pure vineuav pixels, removing the impact that mixed pixels could have upon analysis, with three vegetation indices (VIs) constructed from the segmented imagery. Sentinel-2 Level 2a bottom of atmosphere scenes were also acquired as close to UAV surveys as possible. In parallel, the yield and quality surveys were undertaken one to two weeks prior to harvest. Laboratory refractometry was performed to determine the grape total acid, total soluble solids, alpha amino acids, and berry weight. Extreme gradient boosting (XGBoost v2.1.1) was used to determine the ability of remote sensing data to predict the grape yield and quality parameters. Results suggested that pure cover-cropuav was a successful predictor of grape yield and quality parameters (range of R2 = 0.37–0.45), with model evaluation results comparable to pure vineuav and Sentinel-2 models. The analysis also showed that, whilst the structural similarity between the both UAV and Sentinel-2 data was high, the cover crop is the most influential spectral component within the Sentinel-2 data. This research presents novel evidence for the ability of cover-cropuav to predict grape yield and quality. Moreover, this finding then provides a mechanism which explains the success of the Sentinel-2 modelling of grape yield and quality. For growers and wine producers, creating grape yield and quality prediction models through moderate-resolution satellite imagery would be a significant innovation. Proving more cost-effective than UAV monitoring for large vineyards, such methodologies could also act to bring substantial cost savings to vineyard management. Full article
Show Figures

Figure 1

Back to TopTop