Deep Learning Approaches for Urban Sensing Data Analytics
A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Urban Remote Sensing".
Deadline for manuscript submissions: closed (31 January 2020) | Viewed by 29785
Special Issue Editors
Interests: machine learning; smart cities; remote sensing; geographic information science; geospatial cyber-infrastructure
Interests: lidar mapping; 3D vision; change detection
Special Issues, Collections and Topics in MDPI journals
Interests: mathematical models for visual information; graph matching problem and its applications; computer vision and machine learning; large-scale 3D reconstruction of visual scenes; information processing, fusion, and scene understanding in unmanned intelligent systems; interpretation and information mining of remote sensing images
Special Issues, Collections and Topics in MDPI journals
Interests: pattern analysis and machine learning; image processing engineering; application of remote sensing; computational intelligence and its application in remote sensing image processing
Special Issues, Collections and Topics in MDPI journals
Special Issue Information
Dear Colleagues,
Deep Learning (DL) has attracted burgeoning research interest in the past few years, due to its strength in automatic learning of hierarchical features from big data. At the same time, different types of remote sensing, such as satellite and airborne imagery and video systems, as well as ground-level mobile mapping systems (e.g., mobile laser scanning systems) have been widely used in urban environment monitoring and analytics at various scales. In addition, existing sensing infrastructures (e.g., CCTV) can be harnessed to extract new information (e.g., pedestrian/vehicle moving patterns) with the help of DL. Although DL is rapidly gaining popularity in remote sensing (Zhang et al., 2016), we are facing numerous challenges in applying it to urban sensing data, such as noisy training datasets, incompatible spatial scales, dense mixture of image objects, short update intervals, onerous hyper parameter tuning, and limited prior knowledge. All these challenges are requiring us to develop special DL approaches for urban sensing data analytics.
This Special Issue aims to provide new DL methods that could transform big urban sensing data into knowledge with limited intervention. Due to the high variety of urban sensing systems, how to develop common architectures of deep neural networks will become the major concern of this Special Issue. Topics of interest mainly include but are not limited to:
- New deep neural network models for urban scene classification;
- 3D deep learning for urban scene understanding;
- New recurrent neural network algorithms for urban change detection;
- Advanced training and testing of deep learning methods;
- Real-time urban sensing data analytics using deep learning algorithms;
- Generative adversarial network for remote sensing data fusion;
- Innovative reinforcement learning algorithms for transportation management.
Dr. Jin Xing
Dr. Wen Xiao
Prof. Gui-Song Xia
Prof. Liangpei Zhang
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- Convolutional neural network
- Recurrent neural network
- Deep belief network
- Remote sensing
- Lidar data analytics
- Smart city
- Sensor network
- Transfer learning
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.