Symmetry in Magnetohydrodynamic Flows and Their Applications

A special issue of Symmetry (ISSN 2073-8994). This special issue belongs to the section "Physics".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 2313

Special Issue Editor


E-Mail Website
Guest Editor
Department of Aeronautics and Astronautics, Tokyo Metropolitan University, Tokyo 191-0065, Japan
Interests: computational fluid dynamics; magnetohydrodynamics; modeling of interfacial flows; thermal convection; thermocappilary convection; centrifugal force; taylor–couette flow; boundary layer; transition stability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Magnetohydrodynamics (MHD) is a field of study that incorporates electromagnetism and fluid mechanics. The flow of conducting fluids is substantially influenced by electromagnetic forces. This mechanism has been widely applied to various industries, such as steel-making processes, semiconductor crystal growth, liquid metal blankets in nuclear fusion reactors, electromagnetic pumps, electromagnetic levitation of drops, dynamo simulation of planets, and so on. Chandraskar studied the magnetohydordynamic stability of fundamental flows (Rayleigh–Bénard convection, Taylor–Couette flow and others). Nowadays, due to the developments of both the computational resources and its techniques, more complex MHD flows are being investigated through numerical analyses and experiments. This Special Issue focuses on various complex MHD phenomena and their applications, such as MHD turbulence, MHD flows caused by alternating magnetic fields (moving, rotating or oscillating magnetic fields) and high Hartmann number flows. It also includes breaks of flow symmetry due to various kinds of factors, such as shear stress, buoyancy, centrifugal force, and surface tension. 

Dr. Toshio Tagawa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Symmetry is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • liquid metal
  • dynamo simulation
  • natural convection
  • rotating flow
  • thermo-capillary convection
  • bubbles and droplets
  • stability analysis
  • alternating magnetic field
  • magnetic susceptibility
  • boundary layer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 4210 KiB  
Article
Self-Diffusiophoresis and Symmetry-Breaking of a Janus Dimer: Analytic Solution
by Eldad J. Avital and Touvia Miloh
Symmetry 2023, 15(11), 2019; https://doi.org/10.3390/sym15112019 - 3 Nov 2023
Cited by 1 | Viewed by 913
Abstract
A self-diffusiophoretic problem is considered for a chemically active dimer consisting of two equal touching spherical colloids that are exposed to different fixed-flux and fixed-rate surface reactions. A new analytic solution for the autophoretic mobility of such a catalytic Janus dimer is presented [...] Read more.
A self-diffusiophoretic problem is considered for a chemically active dimer consisting of two equal touching spherical colloids that are exposed to different fixed-flux and fixed-rate surface reactions. A new analytic solution for the autophoretic mobility of such a catalytic Janus dimer is presented in the limit of a small Péclet number and linearization of the resulting Robin-type boundary value problem for the harmonic solute concentration. Explicit solutions in terms of the physical parameters are first obtained for the uncoupled electrostatic and hydrodynamic problems. The dimer mobility is then found by employing the reciprocal theorem depending on the surface slip velocity and on the normal component of the shear stress acting on the inert dimer. Special attention is given to the limiting case of a Janus dimer composed of an inert sphere and a chemically active sphere where the fixed-rate reaction (Damköhler number) is infinitely large. Examples are given, comparing the numerical and approximate analytic solutions of the newly developed theory. Singular points arising in the model are discussed for a dimer with a fixed-rate reaction, and the flow field around the dimer is also analysed. The new developed theory introduces a fast way to compute the mobility of a freely suspended dimer and the induced flow field around it, and thus can also serve as a sub grid scale model for a multi-scale flow simulation. Full article
(This article belongs to the Special Issue Symmetry in Magnetohydrodynamic Flows and Their Applications)
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 6740 KiB  
Review
Magnetohydrodynamic Waves in Asymmetric Waveguides and Their Applications in Solar Physics—A Review
by Robertus Erdélyi and Noémi Kinga Zsámberger
Symmetry 2024, 16(9), 1228; https://doi.org/10.3390/sym16091228 - 18 Sep 2024
Viewed by 618
Abstract
The solar atmosphere is a complex, coupled, highly dynamic plasma environment, which shows rich structuring due to the presence of gravitational and magnetic fields. Several features of the Sun’s atmosphere can serve as guiding media for magnetohydrodynamic (MHD) waves. At the same time, [...] Read more.
The solar atmosphere is a complex, coupled, highly dynamic plasma environment, which shows rich structuring due to the presence of gravitational and magnetic fields. Several features of the Sun’s atmosphere can serve as guiding media for magnetohydrodynamic (MHD) waves. At the same time, these waveguides may contain flows of various magnitudes, which can then destabilise the waveguides themselves. MHD waves were found to be ubiquitously present in the solar atmosphere, thanks to the continuous improvement in the spatial, temporal, and spectral resolution of both space-born and ground-based observatories. These detections, coupled with recent theoretical advancements, have been used to obtain diagnostic information about the solar plasma and the magnetic fields that permeate it, by applying the powerful concept of solar magneto-seismology (SMS). The inclusion of asymmetric shear flows in the MHD waveguide models used may considerably affect the seismological results obtained. Further, they also influence the threshold for the onset of the Kelvin–Helmholtz instability, which, at high enough relative flow speeds, can lead to energy dissipation and contribute to the heating of the solar atmosphere—one of the long-standing and most intensely studied questions in solar physics. Full article
(This article belongs to the Special Issue Symmetry in Magnetohydrodynamic Flows and Their Applications)
Show Figures

Figure 1

Back to TopTop