Selected Papers from the 6th Iberian and 2nd Ibero-American Cyanotoxin Congress CIC2019

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Marine and Freshwater Toxins".

Deadline for manuscript submissions: closed (31 July 2020) | Viewed by 28191

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory of Algology, Department of Plant Biology, Faculty of Biology, Espinardo Campus, University of Murcia, 30100 Murcia, Spain
Interests: plankton; benthos; cyanotoxins; biodiversity; taxonomy; phylogeny and ecology of continental algae; water quality
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cyanobacteria are very old organisms that colonized the planet when it was not habitable for other life forms. Throughout their evolution they have adapted to environmental changes and are currently able to colonize almost any type of habitat, including the most inhospitable, developing a very remarkable morphological diversity and a great metabolic diversity that makes them capable of synthesizing a very high number of bioactive, beneficial, or harmful compounds. Spirulina is an example of the benefits, which has been known as a food supplement for a long time. Cyanotoxins represent the negative aspect; they have different modes of action and can represent an environmental or even sanitary problem when accumulations of cyanobacteria occur, generally linked to episodes of eutrophication. In many countries, and throughout the European Union, there is legislation to control the levels of cyanotoxins in drinking or bathing waters, which is reduced or disappears with the implementation of adequate purification systems, but the growing development of food products and supplements based on microalgae and the boom of products derived from aquaculture make it necessary to implement protocols aimed at safeguarding food security.

Prof. Marina Aboal
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cyanotoxins
  • toxic effects
  • prevention and monitoring
  • toxicity of bioactive compounds
  • methodology
  • food safety
  • aquaculture

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

3 pages, 208 KiB  
Editorial
The 6th Iberian and 2nd Ibero-American Cyanotoxin Congress CIC2019
by Marina Aboal
Toxins 2021, 13(2), 162; https://doi.org/10.3390/toxins13020162 - 19 Feb 2021
Viewed by 1450
Abstract
According to genomic data, toxin cyanobacteria production is likely as old as the group itself [...] Full article

Research

Jump to: Editorial

17 pages, 3914 KiB  
Article
[D-Leu1]MC-LR Has Lower PP1 Inhibitory Capability and Greater Toxic Potency than MC-LR in Animal and Plant Tissues
by Daniela Sedan, Luciano Malaissi, Cristian Adrián Vaccarini, Ezequiel Ventosi, Martín Laguens, Lorena Rosso, Leda Giannuzzi and Darío Andrinolo
Toxins 2020, 12(10), 632; https://doi.org/10.3390/toxins12100632 - 1 Oct 2020
Cited by 7 | Viewed by 2632
Abstract
Two microcystins, MC-LR and [D-Leu1]MC-LR, present in La Plata Basin blooms, are differentiated by substitution of D-Alanine for D-Leucine at position 1. Our objective was to evaluate acute toxicity of [D-Leu1]MC-LR and MC-LR in mice (N:NIH Swiss) and beans [...] Read more.
Two microcystins, MC-LR and [D-Leu1]MC-LR, present in La Plata Basin blooms, are differentiated by substitution of D-Alanine for D-Leucine at position 1. Our objective was to evaluate acute toxicity of [D-Leu1]MC-LR and MC-LR in mice (N:NIH Swiss) and beans (Phaseolus vulgaris). We observed variations in [D-Leu1]MC-LR lethal doses with respect to those reported for MC-LR (100 μg/kg), with an increased liver/body weight ratio and intrahepatic hemorrhages in mice exposed to 50–200 μg [D-Leu1]MC-LR/kg and slight steatosis after a single 25 μg [D-Leu1]MC-LR/kg i.p. dose. Our study in the plant model showed alterations in germination, development, morphology and TBARs levels after a single contact with the toxins during imbibition (3.5 and 15 µg/mL), those treated with [D-Leu1]MC-LR being more affected than those treated with the same concentration of MC-LR. Protein phosphatase 1 (PP1) IC50 values were 40.6 nM and 5.3 nM for [D-Leu1]MC-LR and MC-LR, respectively. However, the total phosphatase activity test in root homogenate showed 60% inhibition for [D-Leu1]MC-LR and 12% for MC-LR. In mouse liver homogenate, 50% inhibition was observed for [D-Leu1]MC-LR and 40% for MC-LR. Our findings indicate the need for further research into [D-Leu1]MC-LR toxicity since together with oxidative stress, the possible inhibition of other phosphatases could explain the differences detected in the potency of the two toxins. Full article
Show Figures

Figure 1

22 pages, 6263 KiB  
Article
[D-Leu1]MC-LR and MC-LR: A Small–Large Difference: Significantly Different Effects on Phaseolus vulgaris L. (Fabaceae) Growth and Phototropic Response after Single Contact during Imbibition with Each of These Microcystin Variants
by Luciano Malaissi, Cristian Adrián Vaccarini, Marcelo Paulo Hernández, Marcela Ruscitti, Cecilia Arango, Federico Busquets, Ana María Arambarri, Leda Giannuzzi, Darío Andrinolo and Daniela Sedan
Toxins 2020, 12(9), 585; https://doi.org/10.3390/toxins12090585 - 11 Sep 2020
Cited by 13 | Viewed by 3310
Abstract
[D-Leu1]MC-LR and MC-LR, two microcystins differing in one amino acid, constitute a sanitary and environmental problem owing to their frequent and concomitant presence in water bodies of the Americas and their association with human intoxication during recreational exposure to cyanobacterial bloom. [...] Read more.
[D-Leu1]MC-LR and MC-LR, two microcystins differing in one amino acid, constitute a sanitary and environmental problem owing to their frequent and concomitant presence in water bodies of the Americas and their association with human intoxication during recreational exposure to cyanobacterial bloom. Present in reservoirs used for irrigation as well, they can generate problems in the development of crops such as Phaseolus vulgaris, of nutritional and economic interest to the region. Although numerous works address the toxic effects of MC-LR, information on the toxicity of [D-Leu1]MC-LR is limited. Our objective was to study the toxic effects of [D-Leu1]MC-LR and MC-LR (3.5 µg/ml) on P. vulgaris after a single contact at the imbibition stage. Our findings indicate that 10 days post treatment, [D-Leu1]MC-LR generates morphological and physiological alterations more pronounced than those caused by MC-LR. In addition to the alterations produced by [D-Leu1]MC-LR in the development of seedlings and the structure of the leaves, roots and stems, we also found alterations in leaf stomatal density and conductivity, a longer delay in the phototropic response and a decrease in the maximum curvature angles achieved with respect to that observed for MC-LR. Our findings indicate that these alterations are linked to the greater inhibition of phosphatase activity generated by [D-Leu1]MC-LR, rather than to oxidative damage. We observed that 30 days after treatment with MC-LR, plants presented better development and recovery than those treated with [D-Leu1]MC-LR. Further studies are required on [D-Leu1]MC-LR and MC-LR toxicity and their underlying mechanisms of action. Full article
Show Figures

Figure 1

13 pages, 6806 KiB  
Article
Are Cyanotoxins the Only Toxic Compound Potentially Present in Microalgae Supplements? Results from a Study of Ecological and Non-Ecological Products
by Elisabet Sánchez-Parra, Soumia Boutarfa and Marina Aboal
Toxins 2020, 12(9), 552; https://doi.org/10.3390/toxins12090552 - 28 Aug 2020
Cited by 17 | Viewed by 4458
Abstract
Food supplements with microalgae are becoming increasingly abundant and can be easily found anywhere. The most popular products are based on cyanophytes, such as Aphanizomenon flos-aquae, Arthrospira platensis and Limnospira maxima, or on chlorophytes, such as Chlorella or Haematoccus. Although they [...] Read more.
Food supplements with microalgae are becoming increasingly abundant and can be easily found anywhere. The most popular products are based on cyanophytes, such as Aphanizomenon flos-aquae, Arthrospira platensis and Limnospira maxima, or on chlorophytes, such as Chlorella or Haematoccus. Although they are all advertised as being very beneficial for health, these products might be harmful because they may contain cyanotoxins and other contaminants, and no information on production methods or strain origins is usually provided. While legislation on the presence of microcystins in waters for different uses is clear, toxicological analyses are not compulsory for food supplements, nor for analyzing anatoxins. Given the potential risk of eating contaminated food, cyanotoxins, heavy metals and the presence of other contaminant organisms were analyzed in 10 microalgae food supplements. Microcystin-LR and anatoxin-a were detected in three analyzed products, and in both cyanophyte- and chlorophyte-based products. The light microscope study revealed the presence of different potentially harmful microbial contaminants. The ICP (OES) analyses detected high concentrations of some heavy metals, especially Pb. The results emphasize the need to promote the better control of food products containing microalgae, and to develop standard methodologies to analyze cyanotoxins and potential toxic compounds to protect consumer health. Full article
Show Figures

Figure 1

18 pages, 3367 KiB  
Article
Antioxidant and Cytoprotective Properties of Cyanobacteria: Potential for Biotechnological Applications
by Adriana Guerreiro, Mariana A. Andrade, Carina Menezes, Fernanda Vilarinho and Elsa Dias
Toxins 2020, 12(9), 548; https://doi.org/10.3390/toxins12090548 - 26 Aug 2020
Cited by 27 | Viewed by 4466
Abstract
Antioxidant compounds from cyanobacteria may constitute a natural alternative to current synthetic antioxidants, which contain preservatives and suspected toxicity. In this work, we evaluate the antioxidant potential of cyanobacterial strains of distinct species/genus isolated from freshwater (n = 6), soil (n = 1) [...] Read more.
Antioxidant compounds from cyanobacteria may constitute a natural alternative to current synthetic antioxidants, which contain preservatives and suspected toxicity. In this work, we evaluate the antioxidant potential of cyanobacterial strains of distinct species/genus isolated from freshwater (n = 6), soil (n = 1) and wastewater (n = 1) environments. Lyophilized biomass obtained from in-vitro cultures of those strains was extracted with ethanol and methanol. The antioxidant potential was evaluated by chemical (DPPH scavenging method, β-carotene bleaching assay, determination of total phenolic and total flavonoid compounds) and biological (H2O2-exposed HEK293T cell line model) approach. Some strains showed high yields of antioxidant activity by the DPPH assay (up to 10.7% IP/20.7 TE μg/mL) and by the β-carotene bleaching assay (up to 828.94 AAC), as well as significant content in phenolic (123.16 mg EAG/g DW) and flavonoid (900.60 mg EQR/g DW) compounds. Normalization of data in a “per cell” or “per cell volume” base might facilitate the comparison between strains. Additionally, most of the cyanobacterial extracts conferred some degree of protection to HEK293T cells against the H2O2-induced cytotoxicity. Freshwater Aphanizomenon gracile (LMECYA 009) and Aphanizomenon flos-aquae (LMECYA 088), terrestrial Nostoc (LMECYA 291) and wastewater Planktothrix mougeotii (LEGE 06224) seem to be promising strains for further investigation on cyanobacteria antioxidant potential. Full article
Show Figures

Figure 1

17 pages, 1941 KiB  
Article
High Levels of Anabaenopeptins Detected in a Cyanobacteria Bloom from N.E. Spanish Sau-Susqueda-El Pasteral Reservoirs System by LC–HRMS
by Cintia Flores and Josep Caixach
Toxins 2020, 12(9), 541; https://doi.org/10.3390/toxins12090541 - 22 Aug 2020
Cited by 16 | Viewed by 3406
Abstract
The appearance of a bloom of cyanobacteria in the Sau-Susqueda-El Pasteral system (River Ter, NE Spain) in the autumn of 2015 has been the most recent episode of extensive bloom detected in Catalonia. This system is devoted mainly to urban supply, regulation of [...] Read more.
The appearance of a bloom of cyanobacteria in the Sau-Susqueda-El Pasteral system (River Ter, NE Spain) in the autumn of 2015 has been the most recent episode of extensive bloom detected in Catalonia. This system is devoted mainly to urban supply, regulation of the river, irrigation and production of hydroelectric energy. In fact, it is one of the main supply systems for the metropolitan area of cities such as Barcelona and Girona. An assessment and management plan was implemented in order to minimize the risk associated to cyanobacteria. The reservoir was confined and periodic sampling was carried out. Low and high toxicity was detected by cell bioassays with human cell lines. Additionally, analysis studies were performed by enzyme-linked immunosorbent assay (ELISA) and liquid chromatography–high resolution mass spectrometry (LC–HRMS). A microcystin target analysis and suspect screening of microcystins, nodularins, cylindrosperpmopsin and related cyanobacterial peptides by LC–HRMS were applied. The results for the analysis of microcystins were negative (<0.3 μg/L) in all the surface samples. Only traces of microcystin-LR, -RR and -dmRR were detected by LC–HRMS in a few ng/L from both fractions, aqueous and sestonic. In contrast, different anabaenopeptins and oscillamide Y at unusually high concentrations (µg-mg/L) were observed. To our knowledge, no previous studies have detected these bioactive peptides at such high levels. The reliable identification of these cyanobacterial peptides was achieved by HRMS. Although recently these peptides are detected frequently worldwide, these bioactive compounds have received little attention. Therefore, more studies on these substances are recommended, especially on their toxicity, health risk and presence in water resources. Full article
Show Figures

Figure 1

16 pages, 1104 KiB  
Article
Cyanotoxins Occurrence in Portugal: A New Report on Their Recent Multiplication
by Cristiana Moreira, Cidália Gomes, Vitor Vasconcelos and Agostinho Antunes
Toxins 2020, 12(3), 154; https://doi.org/10.3390/toxins12030154 - 29 Feb 2020
Cited by 19 | Viewed by 3385
Abstract
Historical reports show that in Portugal, cyanotoxins reports were mainly in the Center (cylindrospermopsins) and South (cylindrospermopsins, saxitoxins) regions of the country apart from the well distributed microcystins. Therefore, in our study, seven freshwater ecosystems located in the North and Center Regions of [...] Read more.
Historical reports show that in Portugal, cyanotoxins reports were mainly in the Center (cylindrospermopsins) and South (cylindrospermopsins, saxitoxins) regions of the country apart from the well distributed microcystins. Therefore, in our study, seven freshwater ecosystems located in the North and Center Regions of Portugal were screened between April and September of 2017 for the main cyanotoxins (microcystins, cylindrospermopsins, anatoxin-a, and saxitoxins) by a two methods approach that combined the application of molecular (PCR) and immunological (ELISA) assays. Results from our survey reveal that both methods revealed the presence of all main cyanotoxins. ELISA results showed that 48% of the samples were above (1.6–18.8 μg/L) the guideline value established for microcystins (1 μg/L), while in the remaining cyanotoxins, 33% of the samples were above (1.1–6.8 μg/L) the guideline value established for anatoxin–a (1 μg/L). Further, for saxitoxins, only one sample gave a value above (4.3 μg/L) the guideline (3 μg/L) and this corresponded to a North Region ecosystem. In the cytotoxin cylindrospermopsins, none of the samples were above the guideline established value (1 μg/L). This study will improve the risk assessment strategy in Portugal, as well as advance water quality and water management. Full article
Show Figures

Figure 1

12 pages, 1154 KiB  
Article
Determination of Cyanotoxins and Phycotoxins in Seawater and Algae-Based Food Supplements Using Ionic Liquids and Liquid Chromatography with Time-Of-Flight Mass Spectrometry
by Claudia Giménez-Campillo, Marta Pastor-Belda, Natalia Campillo, Natalia Arroyo-Manzanares, Manuel Hernández-Córdoba and Pilar Viñas
Toxins 2019, 11(10), 610; https://doi.org/10.3390/toxins11100610 - 22 Oct 2019
Cited by 19 | Viewed by 4469
Abstract
An analytical procedure is proposed for determining three cyanotoxins (microcystin RR, microcystin LR, and nodularin) and two phycotoxins (domoic and okadaic acids) in seawater and algae-based food supplements. The toxins were first isolated by a salting out liquid extraction procedure. Since the concentration [...] Read more.
An analytical procedure is proposed for determining three cyanotoxins (microcystin RR, microcystin LR, and nodularin) and two phycotoxins (domoic and okadaic acids) in seawater and algae-based food supplements. The toxins were first isolated by a salting out liquid extraction procedure. Since the concentration expected in the samples was very low, a dispersive liquid–liquid microextraction procedure was included for preconcentration. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate (80 mg) was used as green extractant solvent and acetonitrile as disperser solvent (0.5 mL) for a 10 mL sample volume at pH 1.5, following the principles of green analytical chemistry. Liquid chromatography with electrospray ionization and quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) was used. The selectivity of the detection system, based on accurate mass measurements, allowed the toxins to be unequivocally identified. Mass spectra for quadrupole time of flight-mass spectrometry (Q-TOF-MS) and Q-TOF-MS/MS were recorded in the positive ion mode and quantification was based on the protonated molecule. Retention times ranged between 6.2 and 18.3 min using a mobile phase composed by a mixture of methanol and formic acid (0.1%). None of the target toxins were detected in any of the seawater samples analyzed, above their corresponding detection limits. However, microcystin LR was detected in the blue green alga sample. Full article
Show Figures

Graphical abstract

Back to TopTop