Exploration of Interstellar Space: Concepts, Space Science and Missions

A special issue of Universe (ISSN 2218-1997). This special issue belongs to the section "Space Science".

Deadline for manuscript submissions: closed (31 January 2023) | Viewed by 13571

Special Issue Editor


E-Mail Website
Guest Editor
New York City College of Technology, The City University of New York, Brooklyn, NY 11201, USA
Interests: theoretical physics and astronautics

Special Issue Information

Dear Colleagues,

This Special Issue aims to gather a wide range of reviews and recent developments, ranging from foundational issues of space exploration to recent advancing discussions, focusing on concepts of exploration of interstellar space, space science and mission design. The objective of this Special Issue is to inspire motivation in new researchers to employ and further develop concepts of interstellar space exploration over the coming decade.

Prof. Dr. Roman Ya Kezerashvili
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Universe is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Propulsion concepts
  • Nuclear fusion and fission propulsion
  • Solar sailing
  • Beam-powered propulsion
  • Theoretical concepts
  • Interstellar medium
  • Astroparticle physics
  • Astrophysics and cosmology
  • Interstellar probe
  • Heliosphere
  • Space physics
  • Mission design
  • Technological and economic challenges

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 3049 KiB  
Article
The Brahmavarta Initiative: A Roadmap for the First Self-Sustaining City-State on Mars
by Arvind Mukundan and Hsiang-Chen Wang
Universe 2022, 8(11), 550; https://doi.org/10.3390/universe8110550 - 23 Oct 2022
Cited by 9 | Viewed by 3514
Abstract
The vast universe, from its unfathomable ends to our very own Milky Way galaxy, is comprised of numerous celestial bodies—disparate yet each having their uniqueness. Amongst these bodies exist only a handful that have an environment that can nurture and sustain life. The [...] Read more.
The vast universe, from its unfathomable ends to our very own Milky Way galaxy, is comprised of numerous celestial bodies—disparate yet each having their uniqueness. Amongst these bodies exist only a handful that have an environment that can nurture and sustain life. The Homo sapiens species has inhabited the planet, which is positioned in a precise way—Earth. It is an irrefutable truth that the planet Earth has provided us with all necessities for survival—for the human race to flourish and prosper and make scientific and technological advancements. Humans have always had an innate ardor for exploration—and now, since they have explored every nook and corner of this planet, inhabiting it and utilizing its resources, the time has come to alleviate the burden we have placed upon Earth to be the sole life-sustaining planet. With limited resources in our grasp and an ever-proliferating population, it is the need of the hour that we take a leap and go beyond the planet for inhabitation—explore the other celestial objects in our galaxy. Then, however, there arises a confounding conundrum—where do we go? The answer is right next to our home—the Red Planet, Mars. Space scientists have confirmed that Mars has conditions to support life and is the closest candidate for human inhabitation. The planet has certain similarities to Earth and its proximity provides us with convenient contact. This paper will be dealing with the conceptual design for the first city-state on Mars. Aggregating assumptions, research, and estimations, this first settlement project shall propose the most optimal means to explore, inhabit and colonize our sister planet, Mars. Full article
Show Figures

Figure 1

16 pages, 4000 KiB  
Article
Trajectory Analysis and Optimization of Hesperides Mission
by Giovanni Mengali and Alessandro A. Quarta
Universe 2022, 8(7), 364; https://doi.org/10.3390/universe8070364 - 1 Jul 2022
Cited by 5 | Viewed by 2291
Abstract
A challenging problem from a technological viewpoint is to send a spacecraft at a distance of about 600 au from the Sun, comparable with that of the Sun’s gravitational focus (that is, the general relativistic focusing of light rays, whose minimum solar distance [...] Read more.
A challenging problem from a technological viewpoint is to send a spacecraft at a distance of about 600 au from the Sun, comparable with that of the Sun’s gravitational focus (that is, the general relativistic focusing of light rays, whose minimum solar distance is obtained when the light rays are assumed to graze the Sun’s surface), and reach it in a time interval on the order of a human working lifetime. A suitably oriented telescope at that distance would be theoretically able to observe exoplanets tens of light years far away and possibly to discover new life forms. The transfer trajectory of this mission is rather complex and requires a close selection of a suitable propulsion system, which must be able to provide the probe with the necessary energy to cruise at a velocity greater than 10 au/year. An effective outline of the these concepts is given by the Hesperides mission, originally proposed by Matloff in 2014. An interesting aspect of this mission proposal is the combination of a nuclear electric propulsion system and a classical solar sail that are jointly exploited to reach the necessary solar system escape velocity. However, the trajectory analysis reported by Matloff is very simplified and is essentially concentrated on a rough estimate of the time required by the spacecraft to reach a distance of 600au. Starting from the Hesperides baseline mission proposal, including the vehicle mass distribution, the aim of this work is to give a detailed mission analysis in an optimal framework. In particular, the spacecraft minimum time trajectory is calculated with indirect methods and a parametric analysis is made to highlight the impact of the main design parameters on the total flight time. The simulations show a substantial reduction of the mission time when compared with the original study. Full article
Show Figures

Figure 1

9 pages, 383 KiB  
Article
The Solar-Electric Sail: Application to Interstellar Migration and Consequences for SETI
by Gregory Lee Matloff
Universe 2022, 8(5), 252; https://doi.org/10.3390/universe8050252 - 19 Apr 2022
Cited by 6 | Viewed by 2395
Abstract
The Solar-Electric Sail accelerates by reflecting positively charged solar wind ions. If it is used to propel an interstellar migration mission, its interstellar cruise velocity relative to the home star cannot exceed the solar wind velocity. In an effort to analytically determine interstellar [...] Read more.
The Solar-Electric Sail accelerates by reflecting positively charged solar wind ions. If it is used to propel an interstellar migration mission, its interstellar cruise velocity relative to the home star cannot exceed the solar wind velocity. In an effort to analytically determine interstellar cruise velocity for a 107 kg generation ship, a constant solar wind velocity within the heliosphere of a Sun-like star of 600 km/s is assumed. The solar wind proton density at 1 AU is also considered constant at 10 protons per cubic centimeter. Solar wind density is assumed to decrease with the inverse square of solar distance. It is shown that, to maintain sufficient acceleration to achieve an interstellar cruise velocity about 70% of the solar wind velocity, the radius of the sail’s electric field is enormous—greater than 105 km. Because the solar wind velocity and density are not constant, field strength must be varied rapidly to compensate for solar wind variation. Although not competitive with the ultimate theoretical performance of solar-photon sail propelled migrations departing from Sun-like stars, the solar-electric sail might be superior in this application for migration from dim K and M main sequence stars. Such migrations conducted during close stellar encounters might have durations < 1000 terrestrial years. If only a tiny fraction of M dwarf stars host star-faring civilizations, a significant fraction of Milky Way galaxy planetary systems may have been inhabited, even if no major advances over currently postulated interstellar transportation systems are postulated. SETI theoreticians should consider this when estimating the effects of interstellar colonization. Full article
Show Figures

Figure 1

Review

Jump to: Research

38 pages, 3885 KiB  
Review
Interstellar Propulsion Using Laser-Driven Inertial Confinement Fusion Physics
by Kelvin F. Long
Universe 2022, 8(8), 421; https://doi.org/10.3390/universe8080421 - 15 Aug 2022
Cited by 8 | Viewed by 4082
Abstract
To transport a spacecraft to distances far beyond the solar heliosphere and around the planets of other stars will require advanced space propulsion systems that go beyond the existing technological state of the art. The release of fusion energy from the interaction of [...] Read more.
To transport a spacecraft to distances far beyond the solar heliosphere and around the planets of other stars will require advanced space propulsion systems that go beyond the existing technological state of the art. The release of fusion energy from the interaction of two low mass atomic nuclei that are able to overcome the Coulomb barrier offers the potential for ∼1011J/g specific energy release and implies that robotic missions to the nearby stars to distances of ∼5–10 ly may be possible in trip durations of the order of ∼50–100 years, travelling at cruise speeds of the order of ∼0.05–0.15 c. Such missions would be characterised with ∼kN-MN thrust levels, ∼GW-TW jet powers, ∼kW/kg-MW/kg specific powers. One of the innovative methods by which fusion reactions can be ignited is via the impingement of laser beams onto an inertial confinement fusion capsule, imploding it to a thermonuclear state. This paper gives an overview of the physics of inertial confinement fusion and the interaction of a laser beam with a capsule to include the simulation of a 1D particle-in-cell code calculation to illustrate the effects. In the application to deep space missions, various spacecraft concepts from the literature are discussed, and the range of values assumed for the pulse frequency, burn fraction and areal density appropriate for the mission are presented. It is concluded that advanced space propulsion via inertial confinement fusion is a plausible part of our future, provided that experimental validation of ignition is on the horizon and numerical models for feasibility concepts are developed to high fidelity and on a consistent basis. Full article
Show Figures

Figure 1

Back to TopTop