water-logo

Journal Browser

Journal Browser

Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Wastewater Treatment and Reuse".

Deadline for manuscript submissions: closed (10 September 2021) | Viewed by 26690

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
1. Chemical Engineering Department, School of Industrial Engineering (EEI), University of Vigo, 36310 Vigo, Spain
2. Chemical Engineering Department, Escuela de Ingeniería de Barcelona Este (EEBE), Universitat Politècnica de Catalunya (UPC)-BarcelonaTECH, 08930 Barcelona, Spain
Interests: bioactive ingredients; surface-active compounds; natural products; cosmetic formulations; green technology; waste valorization; fermentation; Lactobacillus species; probiotic and prebiotic properties
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Chemical Engineering Department, Universitat Politècnica de Catalunya (UPC)—Barcelona TECH, Campus Diagonal, Besòs, 08930 Barcelona, Spain
Interests: membranes; resource recovery; waste to product; acid water; seawater; nanofiltration; electrodialysis; liquid–liquid membrane contactors; ion-exchange resins; agro-food recovery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The triple-R model (reduce, reuse, and recycle) is the essential concept of the circular economy. Due to population growth, the recovery of added-value products from wastes has become a challenge. Wastewaters of different origin (urban, industrial, mining, textile, distillery, and microbial culture, among others) are rich in energy, water, and nutrient sources that can be recovered and reused within a circular economy framework. Recently, wastewater treatment plants have been converted into biofactories, since they can convert waste into new products (water, nutrients, fertilizers, biomethane, electricity, heat, etc.) with a minimal environmental impact. In this context, adsorption and ion-exchange, as well as the integration of both processes, have been proposed as promising technologies for the treatment of wastewaters for resource recovery. Therefore, the aim of this Special Issue, entitled “Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery”, is to promote these two processes as innovative and environmentally friendly alternatives for the recovery of secondary raw materials from by-products or waste streams. These processes could improve the environmental, economic, and social impacts of the currently used wastewater treatment techniques. We welcome original research articles, reviews, industrial case studies, and short communications.

Dr. Xanel Vecino
Dr. Mònica Reig
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • adsorption technology
  • ion-exchange process
  • process integration
  • wastewater treatment
  • added-value products
  • resource recovery
  • circular economy
  • industrial application
  • waste to product

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

3 pages, 182 KiB  
Editorial
Wastewater Treatment by Adsorption and/or Ion-Exchange Processes for Resource Recovery
by Xanel Vecino and Mònica Reig
Water 2022, 14(6), 911; https://doi.org/10.3390/w14060911 - 15 Mar 2022
Cited by 9 | Viewed by 3065
Abstract
Nowadays, resource recovery is a trending topic following the circular economy schemes proposed by the European Union [...] Full article

Research

Jump to: Editorial

15 pages, 2967 KiB  
Article
A Novel Combined Treatment Process of Hybrid Biosorbent–Nanofiltration for Effective Pb(II) Removal from Wastewater
by Asma Hanif, Shaukat Ali, Muhammad Asif Hanif, Umer Rashid, Haq Nawaz Bhatti, Muhammad Asghar, Ali Alsalme and Dimitrios A. Giannakoudakis
Water 2021, 13(23), 3316; https://doi.org/10.3390/w13233316 - 23 Nov 2021
Cited by 18 | Viewed by 2387
Abstract
The untreated effluents discharged by different industries, such as metallurgy, fertilizers, pesticide, leather, mining, electroplating, surface finishing, aerospace, and electroplating, have increased the risk of the contamination of bodies of water by heavy metals. Herein, hybrid biosorbent–nanofiltration processes for Pb(II) removal from wastewater [...] Read more.
The untreated effluents discharged by different industries, such as metallurgy, fertilizers, pesticide, leather, mining, electroplating, surface finishing, aerospace, and electroplating, have increased the risk of the contamination of bodies of water by heavy metals. Herein, hybrid biosorbent–nanofiltration processes for Pb(II) removal from wastewater was studied. The hybrid biosorbent was prepared from date seed waste and Ganoderma lucidum. Hybrid biosorbent characterization was performed by SEM and FTIR. SEM micrographs showed that the HB surface is irregular. For the adsorption studies, various sorption parameters were optimized. The maximum biosorption capacity of immobilized heat-inactivated hybrid biosorbent was 365.9 mg/g, with the Langmuir isotherm model to present the best fit. Desorption experiments were conducted for regenerating immobilized heat-inactivated hybrid biosorbent for three consecutive cycles using different desorption agents, with acetic acid to be the optimum. Going a step further, nanofiltration was also applied as a post-treatment process to elevate the remediation effectiveness for wastewater of high Pb(II) initial concentrations. The reasonably low cost and high removal of Pb(II) make hybrid biosorbent–nanofiltration processes a prosperous and potentially attractive hybrid approach against heavy-metal-polluted wastewater. Full article
Show Figures

Figure 1

18 pages, 2551 KiB  
Article
Evaluation of Calcium Alginate-Based Biopolymers as Potential Component of Membranes for Recovering Biosurfactants from Corn Steep Water
by Andrea Martínez-Arcos, Mònica Reig, José Manuel Cruz, José Luis Cortina, Ana Belén Moldes and Xanel Vecino
Water 2021, 13(17), 2396; https://doi.org/10.3390/w13172396 - 31 Aug 2021
Cited by 2 | Viewed by 2957
Abstract
Corn steep water (CSW) is a complex agro-food stream that is used as a source of cost-competitive biosurfactants, since they are produced spontaneously in the steeping process of corn, avoiding production costs. Nevertheless, the extraction of biosurfactants from CSW using sustainable processes is [...] Read more.
Corn steep water (CSW) is a complex agro-food stream that is used as a source of cost-competitive biosurfactants, since they are produced spontaneously in the steeping process of corn, avoiding production costs. Nevertheless, the extraction of biosurfactants from CSW using sustainable processes is still a challenge. Consequently, the use of calcium alginate membranes could present a novel and sustainable technology for recovering biosurfactants from aqueous streams. Therefore, the aim of this work is to evaluate calcium alginate-based biopolymers, without and with the presence of grape marc as an additive, as a key component of membranes for the recovery of biosurfactants in corn steep water. Biosurfactants are present in CSW, together with other inorganic solutes and biomolecules, such as organic acids, sugars, cations, anions as well as metals. Hence, the competition of these mentioned compounds for the active sites of the calcium alginate-based biopolymers was high. However, they showed a good adsorption capacity for biosurfactants, recovering around 55 ± 2% and 47 ± 1%, of biosurfactants from CSW using both calcium alginate-based biopolymers, with and without biodegraded grape marc. Regarding adsorption capacity, it was 54.8 ± 0.6 mg biosurfactant/g bioadsorbent for the biopolymer containing grape marc, and 46.8 ± 0.4 mg biosurfactant/g bioadsorbent for the calcium alginate-based biopolymer alone. Based on these results, it could be postulated that the formulation of green membranes, based on calcium alginate-based polymers, could be an interesting alternative for the recovery of biosurfactants from aqueous streams including CSW. Full article
Show Figures

Figure 1

19 pages, 1940 KiB  
Article
Ion-Exchange Technology for Lactic Acid Recovery in Downstream Processing: Equilibrium and Kinetic Parameters
by X. Vecino, M. Reig, C. Valderrama and J. L. Cortina
Water 2021, 13(11), 1572; https://doi.org/10.3390/w13111572 - 2 Jun 2021
Cited by 12 | Viewed by 4997
Abstract
The downstream processing for the separation and purification of lactic acid is a hot research area in the bio-refinery field due to its continuous growing market in different sectors, such as the food, cosmetic and pharmaceutical sectors. In this work, the use of [...] Read more.
The downstream processing for the separation and purification of lactic acid is a hot research area in the bio-refinery field due to its continuous growing market in different sectors, such as the food, cosmetic and pharmaceutical sectors. In this work, the use of ion-exchange technology for lactic acid recovery is proposed. For that, four anion exchange resins with different polymer structures and functional groups were tested (A100, MN100, A200E and MP64). The sorption process was optimized by the Box–Behnken factorial design, and the experimental data obtained in the sorption process were analyzed by using the response surface methodology and fitted at different isotherms and kinetics models. Moreover, regenerant type, contact time and solid/liquid ratio were evaluated in the desorption process. Results showed that the best resin for lactic acid removal was A100, at pH = 4, with a resin/lactic acid solution ratio of 0.15 g/mL during a maximum of 1 h, achieving 85% of lactic acid removal. Moreover, equilibrium data sorption of lactic acid onto A100 resin was fitted by a Langmuir isotherm and by a kinetic model of a pseudo-second order. In addition, in the desorption process, it was stablished that a resin/regenerant ratio of 0.15 g/mL during 30 min with 0.1 M of NaOH solution provided the best results (4.45 ± 0.08 mg/g). Full article
Show Figures

Figure 1

15 pages, 12962 KiB  
Article
Improvement of Phosphate Adsorption Kinetics onto Ferric Hydroxide by Size Reduction
by Vicenç Martí, Irene Jubany, David Ribas, José Antonio Benito and Berta Ferrer
Water 2021, 13(11), 1558; https://doi.org/10.3390/w13111558 - 31 May 2021
Cited by 6 | Viewed by 2718
Abstract
Ball milling and ultra-sonication size reduction procedures were applied to granular ferric hydroxide (GFH) to obtain two micro-sized adsorbents. These two adsorbents and GFH were investigated to improve the removal of phosphates from water. The size reduction procedures, using the milling method, allowed [...] Read more.
Ball milling and ultra-sonication size reduction procedures were applied to granular ferric hydroxide (GFH) to obtain two micro-sized adsorbents. These two adsorbents and GFH were investigated to improve the removal of phosphates from water. The size reduction procedures, using the milling method, allowed a reduction of size from 0.5–2 mm to 0.1–2 µm and total disaggregation of the GFH structure. Using an ultra-sonication method yielded a final size of 1.9–50.3 µm with partial disaggregation. The Langmuir model correlated well with the isotherms obtained in batch equilibrium tests for the three adsorbents. The maximum adsorption capacity (qmax) for the milled adsorbent was lower than GFH, but using ultra-sonication was not different from GFH. The equilibrium adsorption of two wastewater samples with phosphate and other anions onto the GFH corresponded well with the expected removal, showing that potential interferences in the isotherms were not important. Batch kinetics tests indicated that the pseudo second-order model fitted the data. Long-term adsorption capacity in kinetics (qe) showed the same trend described for qmax. The application of milling and ultra-sonication methods showed 3.5- and 5.6-fold increases of the kinetic constant (k2) versus the GFH value, respectively. These results showed that ultra-sonication is a very good procedure to increase the adsorption rate of phosphate, maintaining qe and increasing k2. Full article
Show Figures

Figure 1

18 pages, 3264 KiB  
Article
Hydroxyapatite Coatings on Calcite Powder for the Removal of Heavy Metals from Contaminated Water
by Oriol Gibert, César Valderrama, María M. Martínez, Rosa Mari Darbra, Josep Oliva Moncunill and Vicenç Martí
Water 2021, 13(11), 1493; https://doi.org/10.3390/w13111493 - 27 May 2021
Cited by 16 | Viewed by 3424
Abstract
An approach for the remediation of heavy metal-contaminated wastewater that is gaining increasing attention is the application of hydroxyapatite (HAP)-based particles. HAP is conventionally synthesized through wet chemical precipitation of calcium and phosphate ions, although later studies have focused on HAP synthesis from [...] Read more.
An approach for the remediation of heavy metal-contaminated wastewater that is gaining increasing attention is the application of hydroxyapatite (HAP)-based particles. HAP is conventionally synthesized through wet chemical precipitation of calcium and phosphate ions, although later studies have focused on HAP synthesis from solid calcite contacted with a phosphate solution under ambient conditions. This synthesis route can allow saving soluble Ca-chemicals and, thus, make the process more cost-efficient. The aim of this study was to coat natural calcite powder with a layer of HAP for the removal of Zn and Cu from contaminated water. For this purpose, a HAP layer was synthesized on calcite particles, characterized using several complementary techniques and evaluated for the removal of Zn and Cu from synthetic solutions. Sorption kinetics and equilibrium isotherms, as well as the effect of sonication of the synthesized sample on its sorption performance, were determined. The results showed that calcite particles were efficiently coated with a HAP layer with high capacity in removing Zn and Cu from acidic solutions, with a qmax of 34.97 mg/g for Zn (increased to 37.88 g/mg after sonication of the sample) and 60.24 mg/g for Cu (which hardly varied with sonication). The mechanisms behind the sorption of Zn and Cu onto HAP, inferred from pH changes, the relation between metal uptake and Ca2+ release and XRD analysis, included surface complexation, ion exchange and precipitation of new Zn- and Cu-containing phases. Full article
Show Figures

Figure 1

15 pages, 10018 KiB  
Article
Adsorption of Malachite Green Dye onto Mesoporous Natural Inorganic Clays: Their Equilibrium Isotherm and Kinetics Studies
by Sami Ullah, Altaf Ur Rahman, Fida Ullah, Abdur Rashid, Tausif Arshad, Eva Viglašová, Michal Galamboš, Niyaz Mohammad Mahmoodi and Haseeb Ullah
Water 2021, 13(7), 965; https://doi.org/10.3390/w13070965 - 31 Mar 2021
Cited by 49 | Viewed by 4993
Abstract
Contamination of water with organic dyes is a major environmental concern as it causes serious life-threatening environmental problems. The present research was designed to evaluate the potential of three different natural inorganic clays (NICs) i.e., Pakistani bentonite clay (PB), bentonite purchased from Alfa [...] Read more.
Contamination of water with organic dyes is a major environmental concern as it causes serious life-threatening environmental problems. The present research was designed to evaluate the potential of three different natural inorganic clays (NICs) i.e., Pakistani bentonite clay (PB), bentonite purchased from Alfa Aesar (BT), and Turkish red mud (RM) for malachite green (MG) dye removal from an aqueous solution. Various analytical techniques, namely X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), Brunauer–Emmett–Teller surface area measurement (BET), and thermogravimetric analysis (TGA), were used to investigate the physicochemical properties of the NICs samples. The effect of adsorption operational parameters such as contact time, aqueous phase pH, dye concentration, and amount of NICs on the adsorption behavior of MG onto NICs samples were investigated under the batch adsorption system. The equilibrium and kinetic inspection reflected the best description of MG adsorption behavior by the Langmuir isotherm model and pseudo-first-order kinetic model, respectively. The results indicated that the adsorption was favorable at higher pH. The maximum adsorption capacities calculated by Langmuir isotherm for PB, BT, and RM were found to be 243.90 mg/g, 188.68 mg/g, and 172.41 mg/g, respectively. It can be concluded that natural inorganic clays with a higher surface area can be used as an effective adsorbent material to remove the MG dye from an aqueous solution. Full article
Show Figures

Figure 1

Back to TopTop