Topic Editors

Department of Electrical Machines and Drives, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
Faculty of Electrical Engineering, Department of Power Systems and Electrical Drives, West Pomeranian University of Technology in Szczecin, al. Piastów 17, 70-310 Szczecin, Poland

Advanced Electrical Machines and Drives Technologies, 2nd Volume

Abstract submission deadline
31 March 2025
Manuscript submission deadline
31 May 2025
Viewed by
6764

Topic Information

Dear Colleagues,

This Topic is a continuation of the previous successful Topic “Advanced Electrical Machines and Drives Technologies”. Electrical machines and drives are among the most important components used in a wide application range, such as industry, transportation, power systems, etc. Also, nowadays, their development is a real challenge, as it is concentrated on efficiency improvements, together with material and manufacturing cost reductions. The literature on such devices is huge, covering a lot of working principles and topologies. Worldwide, a great number of specialists are involved in these fields, who are seeking both the latest technical advancements and publishing possibilities to reach a greater audience.

This topic intends to collect papers from the fields of electrical machines and drives which focus on their design, optimization, modeling, experimental testing, and fabrication, as well on their application fields. Multidisciplinary approaches are welcomed.

Prof. Dr. Loránd Szabó
Dr. Marcin Wardach
Topic Editors

Keywords

  • bearingless electrical machines 
  • brushless DC motors 
  • claw-pole generators 
  • double salient permanent magnet machines 
  • electrical machine vibrations and noises 
  • fault-tolerant electrical machines and  Induction machines 
  • flux reversal machines and  Flux-switching machines 
  • hybrid excitation machines and steppers
  • linear motors and memory motors 
  • permanent-magnet-assisted variable reluctance machines 
  • permanent magnet synchronous machines and Switched reluctance machines
  • multiphase, high-speed, high-power, low-cost motors and drives 
  • high-performance AC motors and servo drives 
  • advanced control algorithms for AC motor drives 
  • fault diagnosis and fault tolerance in AC motors and drives

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.3 2011 17.8 Days CHF 2400 Submit
Designs
designs
- 3.9 2017 15.2 Days CHF 1600 Submit
Energies
energies
3.0 6.2 2008 17.5 Days CHF 2600 Submit
Machines
machines
2.1 3.0 2013 15.6 Days CHF 2400 Submit
Vehicles
vehicles
2.4 4.1 2019 24.7 Days CHF 1600 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (7 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
13 pages, 3610 KiB  
Article
Design and Performance of a Planetary Gearbox with Two DOFs
by Dana Tulekenova, Marco Ceccarelli, Konstantin Ivanov and Matteo Russo
Machines 2024, 12(11), 780; https://doi.org/10.3390/machines12110780 - 6 Nov 2024
Viewed by 482
Abstract
The article aims to describe the design and operation of a fundamentally new self-regulating planetary transmission, which, without a control system, changes the gear ratio under the influence of a variable external load. A self-regulating transmission can be created based on a kinematic [...] Read more.
The article aims to describe the design and operation of a fundamentally new self-regulating planetary transmission, which, without a control system, changes the gear ratio under the influence of a variable external load. A self-regulating transmission can be created based on a kinematic chain with two degrees of freedom, having only one input. According to the laws of mechanics, such a chain has no definability of motion, since the number of inputs must be equal to the number of degrees of freedom. The equilibrium of a two-movable chain with one input can obtained by creating an additional constraint that substitutes a reaction in the instantaneous center of the intermediate link velocities by the friction moment in the hinge of the intermediate link. The friction moment creates a force constraint, which is taken into account in the equilibrium condition. The obtained equilibrium conditions ensure the definiteness of motion and the ability of self-regulation in the form of an inversely proportional dependence of the speed of the output link on the variable external load. The described method makes it possible to create a fundamentally new class of self-regulating mechanisms in all branches of technology. The interaction of kinematic and force parameters and the construction of parameter graphs was performed using the SolidWorks 2021 program with certain additions. The experimental studies performed confirm the reliability of the theoretical developments. Full article
Show Figures

Figure 1

19 pages, 13232 KiB  
Article
A Power-RPM Reduced-Order Model and Power Control Strategy of the Dual Three-Phase Permanent Magnet Synchronous Motor in a V/f Framework for Oscillation Suppression
by Riqing Su, Yuanze Wang, Hui Deng, Xiong Liu and Yuanpeng Guan
Energies 2024, 17(18), 4563; https://doi.org/10.3390/en17184563 - 12 Sep 2024
Viewed by 457
Abstract
The dual three-phase permanent magnet synchronous motor (DTP-PMSM) under a V/f control framework is widely applied in belts, fans, pumps, etc. However, the oscillation in power and rotor speed is difficult to quantify and suppress, due to the higher-order model of the DTP-PMSM. [...] Read more.
The dual three-phase permanent magnet synchronous motor (DTP-PMSM) under a V/f control framework is widely applied in belts, fans, pumps, etc. However, the oscillation in power and rotor speed is difficult to quantify and suppress, due to the higher-order model of the DTP-PMSM. Thus, a power-revolutions per minute (RPM) reduced-order model and power control strategy of the DTP–PMSM are proposed for oscillation description and suppression. Firstly, according to the structure and V/f control framework, the reduced-order model is proposed under a power-RPM scale with coupled performances between sub-PMSMs, and then the decoupled method is employed. Moreover, the oscillated performances of power and rotor speed are detailed in small signals. Secondly, a power control strategy is proposed, including active power feedforward for active damping and reactive power droop control for high power quality and approaching optimal torque per ampere. Compared with the traditional strategies, the proposed method can achieve a stable and efficient operation, with a higher power factor of the DTP–PMSM, less stator current, and lower electromechanical power loss. Finally, an experimental platform of the DTP–PMSM is set up for the correctness and superiority of the proposed method. Full article
Show Figures

Figure 1

24 pages, 2469 KiB  
Article
Optimized Discrete Nonlinear Control of Alternating Current Three-Phase Motors via an Industrial Variable Frequency Drive
by Nicolás Cervantes-Escorcia, Omar-Jacobo Santos-Sánchez, Liliam Rodríguez-Guerrero, Hugo Romero-Trejo and Orlando García-Pérez
Appl. Sci. 2024, 14(14), 6355; https://doi.org/10.3390/app14146355 - 21 Jul 2024
Viewed by 914
Abstract
This article presents a suboptimal nonlinear control strategy to improve the dynamics of a three-phase alternating current (AC) motor. Using dynamic programming, the calculation of the Bellman function is avoided by determining a suboptimal control sequence that locally minimizes a quadratic performance index [...] Read more.
This article presents a suboptimal nonlinear control strategy to improve the dynamics of a three-phase alternating current (AC) motor. Using dynamic programming, the calculation of the Bellman function is avoided by determining a suboptimal control sequence that locally minimizes a quadratic performance index at each step. The motor’s fixed-frame nonlinear mathematical model controls the stator currents, rotor magnetic fluxes, and rotor angular speed by applying voltages to the stator. Experimental tests are conducted using a Delta VFD007EL11A variable frequency drive (VFD), demonstrating improved motor state behavior and performance compared to an optimal proportional integral (PI) control and a fixed reference input in the VFD. The experiments include set point changes and a comparative analysis of the energy consumption between both controllers considering two cases: free and with load on the motor shaft. Full article
Show Figures

Figure 1

18 pages, 8389 KiB  
Article
Sensorless Capability Expansion for SPMSM Based on Inductance Parameter Identification
by Peng Chen, Ruiqing Ma, Shoujun Song and Zhe Chen
Energies 2024, 17(13), 3219; https://doi.org/10.3390/en17133219 - 30 Jun 2024
Viewed by 742
Abstract
Pulsating high-frequency voltage injection can be used for the sensorless control of a surface-mounted permanent magnet synchronous motor (SPMSM) at zero- and low-speed ranges. However, the sensorless capability still faces challenges to the requirements of industrial application, especially at heavy load status. Aiming [...] Read more.
Pulsating high-frequency voltage injection can be used for the sensorless control of a surface-mounted permanent magnet synchronous motor (SPMSM) at zero- and low-speed ranges. However, the sensorless capability still faces challenges to the requirements of industrial application, especially at heavy load status. Aiming at this issue, this article proposes a sensorless capability expansion method for an SPMSM based on inductance parameter identification. Firstly, incremental inductances at the d-q-axis and cross-coupling inductance are identified offline by three steps combining the rotating high-frequency voltage injection and pulsating high-frequency voltage injection. Using a polynomial curve fitting algorithm, apparent inductances are calculated. Secondly, positive DC current injection at the d-axis is proposed to enhance the saliency ratio based on the analysis of parameter identification results. Compared with the conventional id = 0 or id < 0 method, the saliency ratio is enhanced obviously when a positive DC current is injected at the d-axis. Then, the convergence region of the sensorless control method at heavy load status is expanded and the accuracy of rotor position estimation is improved using the proposed method. Finally, the experimental results validate that the sensorless capability of the SPMSM is expanded. Full article
Show Figures

Figure 1

13 pages, 4035 KiB  
Article
Low-Carbon Operation Strategy of Park-Level Integrated Energy System with Firefly Algorithm
by Hongyin Chen, Songcen Wang, Yaoxian Yu, Yi Guo, Lu Jin, Xiaoqiang Jia, Kaicheng Liu and Xinhe Zhang
Appl. Sci. 2024, 14(13), 5433; https://doi.org/10.3390/app14135433 - 22 Jun 2024
Cited by 2 | Viewed by 989
Abstract
The integrated energy system at the park level, renowned for its diverse energy complementarity and environmentally friendly attributes, serves as a crucial platform for incorporating novel energy consumption methods. Nevertheless, distributed energy generation, characterized by randomness, fluctuations, and intermittency, is significantly influenced by [...] Read more.
The integrated energy system at the park level, renowned for its diverse energy complementarity and environmentally friendly attributes, serves as a crucial platform for incorporating novel energy consumption methods. Nevertheless, distributed energy generation, characterized by randomness, fluctuations, and intermittency, is significantly influenced by the surrounding environment. Within the park, the output of multiple devices frequently diverges significantly from the actual demand, potentially resulting in energy waste phenomena, such as the curtailment of wind and solar power. To tackle the dual challenges of balancing energy supply and demand while reducing carbon emissions in the industrial park, this paper introduces a low-carbon integrated energy system that incorporates distributed renewable and clean energy sources. Mathematical models are formulated for the source–grid–load–storage components of this low-carbon integrated energy system. Furthermore, various operational scenarios for the park-level integrated energy system are analyzed. The ultimate goal is to devise an economically viable, low-carbon, and efficient operational strategy for the integrated energy system, aiming to satisfy the diverse objectives of various stakeholders. Full article
Show Figures

Figure 1

14 pages, 4458 KiB  
Article
Torque Ripple Suppression in the 6/4 Variable Flux Reluctance Machine with Open Winding Configuration by Using Harmonic Injection
by Xu Liu, El Moundher Aouiche, Abdelaziz Aouiche, Yang Cao and Mohammed Echarif Aguida
Energies 2024, 17(11), 2753; https://doi.org/10.3390/en17112753 - 4 Jun 2024
Viewed by 700
Abstract
High torque ripple can be observed with a 6/4 variable flux reluctance machine (VFRM). In order to minimize the torque ripple in VFRMs, this paper presents a harmonic injection method for 6/4 VFRMs with an open-winding configuration. By analyzing the impact of harmonics [...] Read more.
High torque ripple can be observed with a 6/4 variable flux reluctance machine (VFRM). In order to minimize the torque ripple in VFRMs, this paper presents a harmonic injection method for 6/4 VFRMs with an open-winding configuration. By analyzing the impact of harmonics on VFRMs, the method involves detecting the third harmonic using a first-order low-pass filter (FLPF). Subsequently, the extracted harmonics are controlled and shifted to counteract the voltage harmonics in both inverters without inducing phase imbalance or overvoltage. With the proposed method, the torque ripple can be significantly reduced by about 50% under load conditions. The effectiveness of the harmonic injection method is validated through a prototype VFRM. Full article
Show Figures

Figure 1

27 pages, 5565 KiB  
Article
Influence of High-Frequency Operation on the Efficiency of a PMSM Drive with SiC-MOSFET Inverter
by Paisak Poolphaka, Ehsan Jamshidpour, Thierry Lubin, Lotfi Baghli and Noureddine Takorabet
Energies 2024, 17(10), 2347; https://doi.org/10.3390/en17102347 - 13 May 2024
Viewed by 1651
Abstract
This paper investigates the effects of high-frequency switching and a high fundamental frequency on the parameters and efficiency of a high-speed permanent magnet synchronous machine (PMSM) drive. We discuss the design and modeling of the PMSM, taking into account these high-frequency effects. The [...] Read more.
This paper investigates the effects of high-frequency switching and a high fundamental frequency on the parameters and efficiency of a high-speed permanent magnet synchronous machine (PMSM) drive. We discuss the design and modeling of the PMSM, taking into account these high-frequency effects. The impact of high frequencies is analyzed across three different inverters (IGBT, Fast IGBT, and SiC-MOSFET) and the motor, and we employ theoretical analysis, computer simulations, and experimental tests for validation. Our goal is to enhance our understanding of how these high-frequency factors affect the performance of the motor drive. Full article
Show Figures

Figure 1

Back to TopTop