Topic Editors

Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
The School of Pharmacy, University of Reading, Reading RG6 6AD, UK

Complementary Strategies in Drug Delivery: From Particle Engineering to System Optimization

Abstract submission deadline
31 October 2025
Manuscript submission deadline
31 December 2025
Viewed by
2844

Topic Information

Dear Colleagues,

This theme aims to explore the diverse world of drug delivery systems, emphasising the integration of various techniques and approaches to enhance drug efficacy, stability, and patient compliance. It will cover a range of topics, including but not limited to, the following:

  • Advancements in Spray Drying: Focusing on novel techniques using two- and multiple-fluid spray drying to improve drug solubility and bioavailability, particularly for poorly soluble drugs;
  • Innovations in Inhalation Drug Delivery: Highlighting the latest developments in pulmonary drug delivery systems, with a special focus on patient compliance and the role of particle engineering in enhancing drug efficacy;
  • Crystal Engineering in Pharmaceuticals: Discussing the impact of crystal engineering on drug properties, such as solubility, stability, and bioavailability, and its role in overcoming formulation challenges;
  • Emerging Trends in Oral Drug Delivery: Exploring new technologies and approaches in oral drug delivery, including targeted delivery systems and strategies to overcome biological barriers for improved drug absorption;
  • Cross-Disciplinary Approaches: Encouraging submissions that demonstrate the intersection of these areas, such as the use of crystal engineering in inhalation drug delivery or the application of two- and three-fluid spray drying techniques in oral drug formulations.

Prof. Dr. Barbara R. Conway
Dr. Hisham Al-Obaidi
Topic Editors

Keywords

  • drug delivery systems
  • particle engineering
  • spray drying
  • inhalation drug delivery
  • crystal engineering
  • oral drug delivery

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Bioengineering
bioengineering
3.8 4.0 2014 15.6 Days CHF 2700 Submit
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700 Submit
Pharmaceuticals
pharmaceuticals
4.3 6.1 2004 12.8 Days CHF 2900 Submit
Pharmaceutics
pharmaceutics
4.9 7.9 2009 14.9 Days CHF 2900 Submit
Processes
processes
2.8 5.1 2013 14.4 Days CHF 2400 Submit
Scientia Pharmaceutica
scipharm
2.3 4.6 1930 31.4 Days CHF 1000 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (2 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
25 pages, 4244 KiB  
Article
Back to Nature: Development and Optimization of Bioinspired Nanocarriers for Potential Breast Cancer Treatment
by Sally Safwat, Rania M. Hathout, Rania A. H. Ishak and Nahed D. Mortada
Sci. Pharm. 2024, 92(3), 50; https://doi.org/10.3390/scipharm92030050 - 2 Sep 2024
Viewed by 1258
Abstract
This study focuses on the preparation and optimization of caffeic acid (CA)-loaded casein nanoparticles (CS NPs) via the Box–Behnken design (BBD) for potential applications in cancer treatment. CS NPs were loaded with CA as a promising anti-cancer molecule. Non-hazardous green materials were exploited [...] Read more.
This study focuses on the preparation and optimization of caffeic acid (CA)-loaded casein nanoparticles (CS NPs) via the Box–Behnken design (BBD) for potential applications in cancer treatment. CS NPs were loaded with CA as a promising anti-cancer molecule. Non-hazardous green materials were exploited for nanoparticle fabrication. The BBD was used, followed by a desirability function to select the optimum formulation. The BBD was adopted as it avoids the runs implemented in extreme conditions, hence making it suitable for proteins. CS NPs were characterized regarding particle size (PS), size distribution (PDI), zeta potential (ZP), drug entrapment, morphology using TEM, differential scanning calorimetry, molecular docking, in vitro release, and cytotoxicity studies. PS, PDI, and ZP had significant responses, while EE% was insignificant. The suggested models were quadratic with high fitting. Optimized NPs showed PS = 110.31 ± 1.02 nm, PDI = 0.331 ± 0.029, ZP = −23.94 ± 1.64 mV, and EE% = 95.4 ± 2.56%. Molecular modeling indicated hydrophobic and electrostatic interactions between CA and CS, accounting for the high EE%. Almost spherical particles were realized with a sustained CA release pattern. Optimized NPs effectively suppressed the growth of MCF-7 cell lines by scoring the lowest IC50 = 78.45 ± 1.7 µg/mL. A novel combination of bioinspired-derived materials was developed for use in breast cancer treatment. Full article
Show Figures

Figure 1

20 pages, 2334 KiB  
Article
Phosal® Curcumin-Loaded Nanoemulsions: Effect of Surfactant Concentration on Critical Physicochemical Properties
by Joanna Czerniel, Aleksandra Gostyńska, Tomasz Przybylski and Maciej Stawny
Sci. Pharm. 2024, 92(3), 48; https://doi.org/10.3390/scipharm92030048 - 30 Aug 2024
Viewed by 903
Abstract
Curcumin is a well-known and widely used substance of natural origin. It has also been found to be helpful in the treatment of liver diseases. Unfortunately, curcumin has very low bioavailability and a sensitivity to external agents. Improving these parameters is the subject [...] Read more.
Curcumin is a well-known and widely used substance of natural origin. It has also been found to be helpful in the treatment of liver diseases. Unfortunately, curcumin has very low bioavailability and a sensitivity to external agents. Improving these parameters is the subject of many studies. One way to overcome these problems may be to use Phosal® Curcumin as a source of curcumin and encapsulate this dispersion into a nanoemulsion using different types and concentrations of surfactants and co-surfactants, thus manipulating the physicochemical parameters of the nanoemulsion. The present study aimed to develop curcumin-loaded nanoemulsions for intravenous administration and to investigate the effect of Kolliphor HS15 concentration on their critical quality attributes. Methods: Phosal® Curcumin-loaded nanoemulsions with different concentrations of Kolliphor HS15 were prepared by high-pressure homogenization. The effect of Kolliphor HS15 on emulsion physicochemical properties such as mean droplet diameter (MDD), polydispersity index (PDI), zeta potential (ZP), osmolality (OSM), and pH, as well as encapsulation efficiency (EE) and retention rate (RR) of curcumin, were determined. Mid-term stability studies and short-term stress tests were conducted to evaluate the impact of Kolliphor HS15 on the critical quality attributes of the curcumin-loaded nanoemulsions stored under various conditions. Results: Five nanoemulsions with increasing Kolliphor HS15 concentrations were developed. Their MDD ranged from 85.2 ± 2.0 to 154.5 ± 5.1 nm, with a PDI from 0.18 ± 0.04 to 0.10 ± 0.01 and ZP from −15.6 ± 0.7 to −27.6 ± 3.4 mV. Depending on the concentration of Kolliphor HS15, the EE ranged from 58.42 ± 1.27 to 44.98 ± 0.97%. Conclusions: The studied parameters of the developed nanoemulsions meet the requirements for formulations for intravenous administration. Using the appropriate concentration of Kolliphor HS15 allows for a formulation that presents a protective effect against both curcumin and emulsion degradation. Full article
Show Figures

Figure 1

Back to TopTop