Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction
Abstract
:1. Introduction
2. Results
2.1. Effect of Mechanical Pre-Treatment on Fatty Acid Recovery
2.2. Effect of Extraction Condition on Extraction Yield and Lipids Recovery
2.3. Effect of Different Pressure and Temperature on EPA Recovery with a CO2 Flow Rate of 7.24 and 14.48 g/min
2.4. Effect of Different Pressure and Temperature on DHA Recovery with a CO2 Flow Rate of 7.24 and 14.48 g/min
2.5. Effect of Different SF-CO2 Extraction Conditions on FAs Composition
2.6. Comparison with Literature Works
3. Materials and Methods
3.1. Microalgal Biomass and Chemical Composition
3.2. Chemicals
3.3. Mechanical Pre-Treatment of Biomass
3.4. CO2 Supercritical Extraction Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ma, X.-N.; Chen, T.-P.; Yang, B.; Liu, J.; Chen, F. Lipid Production from Nannochloropsis. Mar. Drugs 2016, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Peltomaa, E.; Johnson, M.D.; Taipale, S.J. Marine Cryptophytes Are Great Sources of EPA and DHA. Mar. Drugs 2018, 16, 3. [Google Scholar] [CrossRef]
- Sørensen, M.; Gong, Y.; Bjarnason, F.; Vasanth, G.K.; Dahle, D.; Huntley, M.; Kiron, V. Nannochloropsis oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R.; Jeffrey, S.W.; Volkman, J.K.; Dunstan, G.A. Nutritional properties of microalgae for mariculture. Aquaculture 1997, 151, 315–331. [Google Scholar] [CrossRef]
- Ruxton, C.H.S.; Reed, S.C.; Simpson, M.J.A.; Millington, K.J. The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. J. Hum. Nutr. Diet. 2004, 17, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Taher, H.; Al-Zuhair, S.; Al-Marzouqi, A.H.; Haik, Y.; Farid, M.; Tariq, S. Supercritical carbon dioxide extraction of microalgae lipid: Process optimization and laboratory scale-up. J. Supercrit. Fluids 2014, 86, 57–66. [Google Scholar] [CrossRef]
- Tang, S.; Qin, C.; Wang, H.; Li, S.; Tian, S. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J. Supercrit. Fluids 2011, 57, 44–49. [Google Scholar] [CrossRef]
- Yen, H.W.; Chiang, W.C.; Sun, C.H. Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. J. Taiwan Inst. Chem. Eng. 2012, 43, 53–57. [Google Scholar] [CrossRef]
- Yen, H.-W.; Yang, S.-C.; Chen, C.-H.; Jesisca; Chang, J.-S. Supercritical fluid extraction of valuable compounds from microalgal biomass. Bioresour. Technol. 2015, 184, 291–296. [Google Scholar] [CrossRef]
- Poojary, M.M.; Barba, F.J.; Aliakbarian, B.; Donsì, F.; Pataro, G.; Dias, D.A.; Juliano, P. Innovative alternative technologies to extract carotenoids from microalgae and seaweeds. Mar. Drugs 2016, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.C.K.; Leung, A.Y.H.; Ang, P.O. Comparison of Supercritical Carbon Dioxide and Soxhlet Extraction of Lipids from a Brown Seaweed, Sargassum hemiphyllum (Turn.) C. Ag. J. Agric. Food Chem. 1998, 46, 4228–4232. [Google Scholar] [CrossRef]
- Elst, K.; Maesen, M.; Jacobs, G.; Bastiaens, L.; Voorspoels, S.; Servaes, K. Supercritical CO2 Extraction of Nannochloropsis sp.: A Lipidomic Study on the Influence of Pretreatment on Yield and Composition. Molecules 2018, 23, 1854. [Google Scholar] [CrossRef] [PubMed]
- Mouahid, A.; Crampon, C.; Toudji, S.A.A.; Badens, E. Supercritical CO2 extraction of neutral lipids from microalgae: Experiments and modelling. J. Supercrit. Fluids 2013, 77, 7–16. [Google Scholar] [CrossRef]
- Halim, R.; Gladman, B.; Danquah, M.K.; Webley, P.A. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 2011, 102, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Sanzo, G.; Mehariya, S.; Martino, M.; Larocca, V.; Casella, P.; Chianese, S.; Musmarra, D.; Balducchi, R.; Molino, A. Supercritical Carbon Dioxide Extraction of Astaxanthin, Lutein, and Fatty Acids from Haematococcus pluvialis Microalgae. Mar. Drugs 2018, 16, 334. [Google Scholar] [CrossRef]
- Mehariya, S.; Iovine, A.; Di Sanzo, G.; Larocca, V.; Martino, M.; Leone, G.; Casella, P.; Karatza, D.; Marino, T.; Musmarra, D.; et al. Supercritical Fluid Extraction of Lutein from Scenedesmus almeriensis. Molecules 2019, 24, 1324. [Google Scholar] [CrossRef] [PubMed]
- Molino, A.; Mehariya, S.; Iovine, A.; Larocca, V.; Di Sanzo, G.; Martino, M.; Casella, P.; Chianese, S.; Musmarra, D. Extraction of Astaxanthin and Lutein from Microalga Haematococcus pluvialis in the Red Phase Using CO₂ Supercritical Fluid Extraction Technology with Ethanol as Co-Solvent. Mar. Drugs 2018, 16, 432. [Google Scholar] [CrossRef]
- Molino, A.; Rimauro, J.; Casella, P.; Cerbone, A.; Larocca, V.; Chianese, S.; Karatza, D.; Mehariya, S.; Ferraro, A.; Hristoforou, E.; et al. Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction. J. Biotechnol. 2018, 283, 51–61. [Google Scholar] [CrossRef]
- Molino, A.; Martino, M.; Larocca, V.; Di Sanzo, G.; Spagnoletta, A.; Marino, T.; Karatza, D.; Iovine, A.; Mehariya, S.; Musmarra, D. Eicosapentaenoic Acid Extraction from Nannochloropsis gaditana Using Carbon Dioxide at Supercritical Conditions. Mar. Drugs 2019, 17, 132. [Google Scholar] [CrossRef]
- Ruen-Ngam, D.; Shotipruk, A.; Pavasant, P.; Machmudah, S.; Goto, M. Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem. Eng. Technol. 2012, 35, 255–260. [Google Scholar] [CrossRef]
- Machmudah, S.; Shotipruk, A.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Ind. Eng. Chem. Res. 2006, 45, 3652–3657. [Google Scholar] [CrossRef]
- Lee, A.K.; Lewis, D.M.; Ashman, P.J. Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements. Biomass Bioenergy 2012, 46, 89–101. [Google Scholar] [CrossRef]
- Safi, C.; Camy, S.; Frances, C.; Varela, M.M.; Badia, E.C.; Pontalier, P.-Y.; Vaca-Garcia, C. Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: Influence of bead milling on extraction performance. J. Appl. Phycol. 2014, 26, 1711–1718. [Google Scholar] [CrossRef]
- Shene, C.; Monsalve, M.T.; Vergara, D.; Lienqueo, M.E.; Rubilar, M. High pressure homogenization of Nannochloropsis oculata for the extraction of intracellular components: Effect of process conditions and culture age. Eur. J. Lipid Sci. Technol. 2016, 118, 631–639. [Google Scholar] [CrossRef]
- Cheng, C.-H.H.; Du, T.-B.B.; Pi, H.-C.C.; Jang, S.-M.M.; Lin, Y.-H.H.; Lee, H.-T.T. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour. Technol. 2011, 102, 10151–10153. [Google Scholar] [CrossRef]
- Andrich, G.; Nesti, U.; Venturi, F.; Zinnai, A.; Fiorentini, R. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur. J. Lipid Sci. Technol. 2005, 107, 381–386. [Google Scholar] [CrossRef]
- Cheung, P.C.K.C.K. Temperature and pressure effects on supercritical carbon dioxide extraction of n-3 fatty acids from red seaweed. Food Chem. 1999, 65, 399–403. [Google Scholar] [CrossRef]
- de Melo, S.A.B.V.; Costa, G.M.N.; Viana, A.C.C.; Pessoa, F.L.P. Solid pure component property effects on modeling upper crossover pressure for supercritical fluid process synthesis: A case study for the separation of Annatto pigments using SC-CO2. J. Supercrit. Fluids 2009, 49, 1–8. [Google Scholar] [CrossRef]
- Brunner, G. Extraction of Substances with Supercritical Fluids from Solid Substrates. In Gas Extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes; Steinkopff: Heidelberg, Germany, 1994; pp. 179–250. ISBN 978-3-662-07380-3. [Google Scholar]
- Solana, M.; Rizza, C.S.; Bertucco, A. Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. J. Supercrit. Fluids 2014, 92, 311–318. [Google Scholar] [CrossRef]
- Sosa-Hernández, J.E.; Escobedo-Avellaneda, Z.; Iqbal, H.M.N.; Welti-Chanes, J. State-of-the-Art Extraction Methodologies for Bioactive Compounds from Algal Biome to Meet Bio-Economy Challenges and Opportunities. Molecules 2018, 23, 2953. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Keum, Y.-S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Yoo, C.; Jun, S.-Y.; Ahn, C.-Y.; Oh, H.-M. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 2010, 101, S75–S77. [Google Scholar] [CrossRef] [PubMed]
- Kitada, K.; Machmudah, S.; Sasaki, M.; Goto, M.; Nakashima, Y.; Kumamoto, S.; Hasegawa, T. Supercritical CO2 extraction of pigment components with pharmaceutical importance from Chlorella vulgaris. J. Chem. Technol. Biotechnol. 2009, 84, 657–661. [Google Scholar] [CrossRef]
- Pereira, C.G.; Meireles, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Nobre, B.; Marcelo, F.; Passos, R.; Beir??o, L.; Palavra, A.; Gouveia, L.; Mendes, R. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur. Food Res. Technol. 2006, 223, 787–790. [Google Scholar] [CrossRef]
- Li, Y.; Ghasemi Naghdi, F.; Garg, S.; Adarme-Vega, T.C.; Thurecht, K.J.; Ghafor, W.A.; Tannock, S.; Schenk, P.M. A comparative study: The impact of different lipid extraction methods on current microalgal lipid research. Microb. Cell Fact. 2014, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.C.H.; Kamal, S.M.M.; Harun, M.R. Extraction of eicosapentaenoic acid from Nannochloropsis gaditana using sub-critical water extraction. Malaysian J. Anal. Sci. 2018, 22, 619–625. [Google Scholar] [CrossRef]
- Sharma, K.; Schenk, P.M. Rapid induction of omega-3 fatty acids (EPA) in Nannochloropsis sp. by UV-C radiation. Biotechnol. Bioeng. 2015, 112, 1243–1249. [Google Scholar] [CrossRef]
- Hoffmann, M.; Marxen, K.; Schulz, R.; Vanselow, K.H. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar. Drugs 2010, 8, 2526–2545. [Google Scholar] [CrossRef]
- Agostoni, C.; Canani, R.B.; Fairweather-Tait, S.; Heinonen, M.; Korhonen, H.; La Vieille, S.; Marchelli, R.; Martin, A.; Naska, A.; Neuhäuser-Berthold, M.; et al. Hans Verhagen Scientific Opinion on the extension of use for DHA and EPA-rich algal oil from Schizochytrium sp. as a Novel Food ingredient. EFSA J. 2014, 12, 3843. [Google Scholar] [CrossRef]
- Camacho-Rodríguez, J.; González-Céspedes, A.M.; Cerón-García, M.C.; Fernández-Sevilla, J.M.; Acién-Fernández, F.G.; Molina-Grima, E. A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl. Microbiol. Biotechnol. 2014, 98, 2429–2440. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Jiang, J.; Wang, H.; Cao, X.; Xue, S.; Yang, Q.; Wang, W. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresour. Technol. 2015, 179, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Hernández, D.; Solana, M.; Riaño, B.; García-González, M.C.; Bertucco, A. Biofuels from microalgae: Lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour. Technol. 2014, 170, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Obeid, S.; Beaufils, N.; Camy, S.; Takache, H.; Ismail, A.; Pontalier, P.-Y. Supercritical carbon dioxide extraction and fractionation of lipids from freeze-dried microalgae Nannochloropsis oculata and Chlorella vulgaris. Algal Res. 2018, 34, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.L.; Nobre, B.P.; Cardoso, M.T.; Pereira, A.P.; Palavra, A.F. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chim. Acta 2003, 356, 328–334. [Google Scholar] [CrossRef]
- Liu, S.; Abu Hajar, H.A.; Riefler, G.; Stuart, B.J. Lipid Extraction from Spirulina sp. and Schizochytrium sp. Using Supercritical CO2 with Methanol. Biomed Res. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Molino, A.; Iovine, A.; Casella, P.; Mehariya, S.; Chianese, S.; Cerbone, A.; Rimauro, J.; Musmarra, D. Microalgae Characterization for Consolidated and New Application in Human Food, Animal Feed and Nutraceuticals. Int. J. Environ. Res. Public Health 2018, 15, 2436. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. a Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 2010, 37, 911–917. [Google Scholar] [CrossRef]
- ISO 12966-2. Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters; International Organization for Standardization: Geneva, Switzerland, 2017; pp. 1–21. [Google Scholar]
- UNI ISO 12966-4. Animal and Vegetables Fat and Oils. Gas Chromatography of Fatty Acid Methyl Esters. Part 4: Determination by Capillary Chromatography; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
Sample Availability: Not Available. |
Experimental Code | Extraction Yield (mg/g) | Extracted Total Lipids (mg/g) | Cumulative Lipids Purity (%) | Extracted FAs (mg/g) | Extracted FAs (%) | SFAs (mg/g) | MUFAs (mg/g) | PUFAs (mg/g) |
---|---|---|---|---|---|---|---|---|
E_01 | 20.9 | 5.60 | 26.79 | 5.33 | 4.84 | 1.53 | 1.95 | 1.85 |
E_02 | 55.92 | 6.70 | 11.98 | 6.21 | 5.64 | 2.11 | 2.32 | 1.78 |
E_03 | 56.64 | 9.19 | 16.23 | 8.12 | 7.44 | 2.57 | 2.96 | 2.67 |
E_04 | 40.66 | 8.85 | 21.76 | 7.60 | 6.90 | 4.78 | 1.53 | 1.29 |
E_05 | 66.42 | 9.38 | 14.12 | 8.90 | 8.08 | 2.66 | 2.80 | 3.45 |
E_06 | 75.84 | 11.70 | 15.42 | 10.13 | 9.19 | 3.13 | 3.64 | 3.36 |
E_07 | 14.74 | 2.25 | 15.29 | 0.095 | 0.09 | 0.04 | 0.03 | 0.03 |
E_08 | 50.82 | 10.24 | 20.15 | 9.67 | 8.78 | 3.17 | 3.48 | 3.02 |
E_09 | 74.3 | 12.51 | 16.83 | 11.69 | 10.61 | 3.28 | 4.11 | 4.29 |
E_10 | 43.86 | 8.07 | 18.41 | 7.41 | 6.73 | 2.65 | 2.74 | 2.03 |
E_11 | 58.26 | 10.37 | 17.79 | 9.26 | 8.41 | 2.93 | 3.59 | 2.74 |
E_12 | 74.72 | 11.69 | 15.65 | 11.19 | 10.16 | 3.32 | 4.05 | 3.82 |
E_13 | 51.22 | 9.66 | 18.86 | 7.86 | 7.14 | 4.69 | 1.48 | 1.70 |
E_14 | 77.92 | 12.27 | 15.75 | 11.67 | 10.59 | 3.27 | 4.44 | 3.96 |
E_15 | 79.90 | 14.13 | 17.69 | 13.45 | 12.21 | 3.93 | 4.72 | 4.80 |
E_16 | 16.38 | 5.84 | 35.67 | 4.23 | 3.84 | 1.86 | 0.58 | 1.79 |
E_17 | 72.78 | 14.30 | 19.65 | 13.74 | 12.47 | 4.23 | 5.12 | 4.40 |
E_18 | 94.28 | 18.39 | 19.51 | 17.56 | 15.94 | 4.74 | 5.89 | 6.92 |
Experimental Code | FATTY ACIDS PROFILE – Recovey (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA | LA | TA | PA | PeA | HA | AA | PaA | EA | MY | NA | ETA | LiA | EPA | DHA | |
E_01 | 38.40 | 3.20 | 4.45 | 9.39 | 0.00 | 8.57 | 5.86 | 4.35 | 29.55 | 3.76 | 9.84 | 0.00 | 18.51 | 2.07 | 0.00 |
E_02 | 48.36 | 0.57 | 2.06 | 2.66 | 0.34 | 13.47 | 7.10 | 6.57 | 29.35 | 5.72 | 4.01 | 0.10 | 10.12 | 3.13 | 23.17 |
E_03 | 55.61 | 0.56 | 1.73 | 3.46 | 1.09 | 16.09 | 9.64 | 8.11 | 24.69 | 7.48 | 7.48 | 0.12 | 11.57 | 5.34 | 20.47 |
E_04 | 6.42 | 0.00 | 2.70 | 0.00 | 29.46 | 30.60 | 0.00 | 4.15 | 99.32 | 0.37 | 0.00 | 2.78 | 6.14 | 1.91 | 3.54 |
E_05 | 34.19 | 2.99 | 1.44 | 39.13 | 0.28 | 16.45 | 9.14 | 8.01 | 22.82 | 8.05 | 4.41 | 7.72 | 10.45 | 5.93 | 33.13 |
E_06 | 5.30 | 0.48 | 2.20 | 3.32 | 0.37 | 21.89 | 5.89 | 9.83 | 27.42 | 9.47 | 9.86 | 0.11 | 13.26 | 6.96 | 30.93 |
E_07 | 66.20 | 0.00 | 0.00 | 97.58 | 0.14 | 4536 | 0.18 | 6.83 | 3.18 | 10.25 | 15.08 | 0.00 | 32.69 | 3.57 | 9.46 |
E_08 | 36.71 | 8.97 | 2.36 | 37.18 | 0.36 | 19.52 | 10.42 | 10.01 | 33.69 | 8.99 | 5.85 | 0.13 | 13.87 | 5.78 | 55.69 |
E_09 | 36.71 | 3.22 | 3.25 | 3.07 | 1.22 | 22.31 | 7.01 | 10.82 | 33.30 | 11.62 | 11.47 | 0.28 | 15.59 | 9.13 | 11.32 |
E_10 | 12.32 | 2.23 | 1.58 | 88.31 | 0.07 | 17.33 | 4.14 | 7.75 | 25.76 | 6.53 | 5.73 | 0.11 | 7.91 | 4.11 | 34.48 |
E_11 | 30.92 | 5.05 | 3.29 | 0.00 | 0.32 | 20.13 | 5.72 | 9.93 | 43.06 | 8.39 | 8.02 | 0.02 | 6.85 | 6.24 | 39.49 |
E_12 | 45.94 | 1.06 | 2.59 | 1.98 | 0.47 | 23.02 | 6.84 | 11.15 | 38.62 | 10.47 | 9.34 | 9.00 | 3.18 | 7.66 | 79.63 |
E_13 | 3.02 | 0.00 | 2.80 | 0.00 | 0.00 | 12.23 | 80.59 | 5.62 | 1.00 | 0.23 | 0.23 | 0.00 | 0.44 | 4.51 | 14.82 |
E_14 | 72.03 | 2.59 | 2.51 | 1.99 | 0.64 | 22.08 | 7.01 | 11.09 | 31.80 | 10.55 | 17.59 | 2.35 | 14.43 | 7.77 | 54.71 |
E_15 | 53.68 | 0.75 | 2.92 | 5.06 | 0.63 | 25.38 | 14.50 | 12.49 | 45.52 | 12.89 | 12.65 | 0.00 | 16.91 | 10.12 | 69.15 |
E_16 | 7.59 | 0.00 | 1.50 | 0.00 | 0.00 | 5.31 | 30.10 | 1.94 | 3.22 | 0.30 | 0.90 | 0.00 | 0.28 | 4.79 | 19.31 |
E_17 | 76.91 | 0.87 | 2.97 | 0.76 | 1.45 | 27.96 | 12.25 | 14.01 | 39.64 | 12.60 | 13.50 | 0.10 | 18.93 | 8.74 | 53.55 |
E_18 | 64.15 | 6.42 | 4.24 | 5.15 | 2.00 | 31.71 | 11.34 | 14.96 | 49.08 | 17.94 | 17.81 | 0.00 | 19.38 | 15.59 | 59.22 |
Microalgae Specie | SF-CO2 Operational Conditions | Lipid Extraction Yield | CO2/Dried Biomass | Ref. | |||
---|---|---|---|---|---|---|---|
Pressure | Temperature | Extraction Time | Flow Rate | ||||
bar | °C | min | g/min | % | g/g | ||
Pavlova sp. | 306 | 60 | 360 | -- | 17.90 | -- | [26] |
Hypnea charoides | 379 | 40 | 120 | 1.40 | 58.00 | 30 | [28] |
Isochrysis T-ISO | 300 | 45 | 90 | 6.70 | 7.70 | 1200 | [45] |
Nannochloropsis gaditana | 300 | 45 | 90 | 6.70 | 7.90 | 1200 | |
Tetraselmis sp. | 300 | 45 | 90 | 6.70 | 11.10 | 1200 | |
Scenedesmus almeriensis | 300 | 45 | 90 | 6.70 | 10.10 | 1200 | |
Nannochloropsis oculata | 250 | 50 | 240 | 25.00 | 15.00 | 214 | [46] |
Chlorella | 350 | 50 | -- | -- | 50.00 | 30 | [47] |
Schizochytrium sp. | 276 | 50 | 360 | 353.53 | 10.00 | 636 | [48] |
Spirulina sp. | 276 | 50 | 360 | 353.53 | 9.00 | 636 | |
Nannochloropsis sp. | 550 | 75 | 100 | 7.24 | 8.22 | 362 | This work |
550 | 75 | 100 | 14.48 | 12.08 | 724 |
Chemical Composition of Nannochloropsis sp. | Content (mg/g) |
---|---|
Humidity (mg/g wet) | 19.03 |
Total dietary fiber (TDF) | 196.90 |
Carbohydrates | 350.87 |
Proteins | 267.04 |
Lipids | 153.22 |
Ash | 83.17 |
Fatty acid composition | |
Octanoic acid | 0.17 |
Lauric acid | 1.10 |
Tridecanoic acid | 2.33 |
Palmitic acid | 0.26 |
Pentadecanoic acid | 2.95 |
Heptadecanoic acid | 12.53 |
Arachidic acid (o arachico) | 3.83 |
Σ SFAs | 23.17 |
Palmitoleic acid | 25.88 |
Elaidic acid | 0.45 |
Myristoleic acid | 4.84 |
Nervonic acid | 5.22 |
Σ MUFAs | 36.39 |
cis-8,11,14-Eicosatrienoic acid (ω-6) | 8.03 |
Linoelaidic acid (ω-6) | 5.91 |
cis-5,8,11,14,17-Eicosapentaenoic acid (ω-3)-EPA | 36.51 |
cis-4,7,10,13,16,19-Docosahexaenoic acid (ω-3)-DHA | 0.15 |
Σ PUFAs | 50.60 |
Experiment Code | Temperature (°C) | Pressure (bar) | CO2-Flow Rate (g/min) |
---|---|---|---|
E_01 | 50 | 100 | 7.24 |
E_02 | 50 | 400 | 7.24 |
E_03 | 50 | 550 | 7.24 |
E_04 | 65 | 100 | 7.24 |
E_05 | 65 | 400 | 7.24 |
E_06 | 65 | 550 | 7.24 |
E_07 | 75 | 100 | 7.24 |
E_08 | 75 | 400 | 7.24 |
E_09 | 75 | 550 | 7.24 |
E_10 | 50 | 100 | 14.48 |
E_11 | 50 | 400 | 14.48 |
E_12 | 50 | 550 | 14.48 |
E_13 | 65 | 100 | 14.48 |
E_14 | 65 | 400 | 14.48 |
E_15 | 65 | 550 | 14.48 |
E_16 | 75 | 100 | 14.48 |
E_17 | 75 | 400 | 14.48 |
E_18 | 75 | 550 | 14.48 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, G.P.; Balducchi, R.; Mehariya, S.; Martino, M.; Larocca, V.; Di Sanzo, G.; Iovine, A.; Casella, P.; Marino, T.; Karatza, D.; et al. Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction. Molecules 2019, 24, 2406. https://doi.org/10.3390/molecules24132406
Leone GP, Balducchi R, Mehariya S, Martino M, Larocca V, Di Sanzo G, Iovine A, Casella P, Marino T, Karatza D, et al. Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction. Molecules. 2019; 24(13):2406. https://doi.org/10.3390/molecules24132406
Chicago/Turabian StyleLeone, Gian Paolo, Roberto Balducchi, Sanjeet Mehariya, Maria Martino, Vincenzo Larocca, Giuseppe Di Sanzo, Angela Iovine, Patrizia Casella, Tiziana Marino, Despina Karatza, and et al. 2019. "Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction" Molecules 24, no. 13: 2406. https://doi.org/10.3390/molecules24132406
APA StyleLeone, G. P., Balducchi, R., Mehariya, S., Martino, M., Larocca, V., Di Sanzo, G., Iovine, A., Casella, P., Marino, T., Karatza, D., Chianese, S., Musmarra, D., & Molino, A. (2019). Selective Extraction of ω-3 Fatty Acids from Nannochloropsis sp. Using Supercritical CO2 Extraction. Molecules, 24(13), 2406. https://doi.org/10.3390/molecules24132406