Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Compounds
2.2. Kinetic Measurements-Inhibition
2.3. Molecular Modelling
3. Materials and Methods
3.1. Chemicals
3.2. Inhibition of BChE by Heterocyclic β-d-Glycoconjugates
3.3. Molecular Modelling
3.4. In Silico Prediction of Blood–Brain Barrier Penetration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ji, H.; Dai, D.; Wang, Y.; Jiang, D.; Zhou, X.; Lin, P.; Ji, X.; Li, J.; Zhang, Y.; Yin, H.; et al. Association of BDNF and BCHE with Alzheimer’s disease: Meta-analysis based on 56 genetic case-control studies of 12,563 cases and 12,622 controls. Exp. Ther. Med. 2015, 9, 1831–1840. [Google Scholar] [CrossRef] [PubMed]
- Amstrong, R.A. What causes Alzheimer’s disease. Folia Neuropathol. 2013, 51, 169–188. [Google Scholar] [CrossRef]
- Borroni, B.; Costanzi, C.; Padovani, A. Genetic susceptibility to behavioral and psychological symptoms in Alzheimer disease. Curr. Alzheimer Res. 2010, 7, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Geula, C.; Mesulam, M.M. Cholinesterases and the pathology of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 1995, 9, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Darvesh, S.; Walsh, R.; Kumar, R.; Caines, A.; Roberts, S.; Magee, D.; Rockwood, K.; Martin, E. Inhibition of Human Cholinesterases by Drugs Used to Treat Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2003, 17, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C. Toxicology of Organophospate and Carbamate Compounds; MA01803; Elsevier Academic Press: Burlington, NJ, USA, 2006. [Google Scholar]
- Guillozet, A.; Smiley, J.F.; Mash, D.C.; Mesulam, M.M. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 1997, 42, 909–918. [Google Scholar] [CrossRef]
- Onor, M.L.; Trevisiol, M.; Aguglia, E. Rivastigmine in the treatment of Alzheimer’s disease: An update. Clin. Interv. Aging. 2007, 2, 17–32. [Google Scholar] [CrossRef]
- Ramos, E.; Palomino-Antolín, A.; Bartolini, M.; Iriepa, I.; Moraleda, I.; Diez-Iriepa, D.; Samadi, A.; Cortina, C.V.; Chioua, M.; Egea, J.; et al. QuinoxalineTacrine QT78, a Cholinesterase Inhibitor as a Potential Ligand for Alzheimer’s Disease Therapy. Molecules 2019, 24, 1503. [Google Scholar] [CrossRef]
- Hussein, W.; Nurpelin Saglık, B.; Levent, S.; Korkut, B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and Biological Evaluation of New Cholinesterase Inhibitors for Alzheimer’s Disease. Molecules 2018, 23, 2033. [Google Scholar] [CrossRef]
- Blažević, I.; Đulović, A.; Čikeš Čulić, V.; Burčul, F.; Ljubenkov, I.; Ruščić, M.; Generalić Mekenić, I. Bunias erucago L.: Glucosinolate Profile and In Vitro Biological Potential. Molecules 2019, 24, 741. [Google Scholar] [CrossRef]
- Šinko, G. Assessment of scoring functions and in silico parameters for AChE-ligand interactions as a tool for predicting inhibition potency. Chem. Biol. Interact. 2019, 308, 216–223. [Google Scholar] [CrossRef]
- Simeon-Rudolf, V.; Šinko, G.; Štuglin, A.; Reiner, E. Inhibition of human blood acetylcholinesterase and butyrylcholinesterase by ethopropazine. Croat. Chem. Acta 2001, 74, 173–182. [Google Scholar]
- Šinko, G.; Kovarik, Z.; Rainer, E.; Simeon-Rudolf, V.; Stojan, J. Mechanism of stereoselective interaction between butyrylcholinesterase and ethopropazine enantiomers. Biochimie 2011, 93, 1797–1807. [Google Scholar] [CrossRef]
- Bosak, A.; Smilović, I.G.; Šinko, G.; Vinković, V.; Kovarik, Z. Metaproterenol, isoproterenol, and their bisdimethylcarbamate derivatives as human cholinesterase inhibitors. J. Med. Chem. 2012, 55, 6716–6723. [Google Scholar] [CrossRef]
- Pagano, G.; Rengo, G.; Pasqualetti, G.; Femminella, G.D.; Monzani, F.; Ferrara, N.; Tagliati, M. Cholinesterase inhibitors for Parkinson’s disease: A systematic review and meta-analysis. Neurol. Neurosurg. Psychiatry 2015, 86, 767–773. [Google Scholar] [CrossRef]
- Garcia, G.E.; Campbell, A.J.; Olson, J.; Moorad-Doctor, D.; Morthole, V.I. Novel oximes as blood-brain barrier penetrating cholinesterase reactivators. Chem. Biol. Interact. 2010, 187, 199–206. [Google Scholar] [CrossRef]
- Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. Vogel’s Texbook of Practical Organic Chemistry, 5th ed.; Longman Scientific & Technical Harlow: Essex, UK, 1989. [Google Scholar]
- Mukhopadhyay, B.; Kartha, K.P.R.; Russell, D.A.; Field, R.A. Streamlined Synthesis of Per-O-acetylated Sugars, Glycosyl Iodides, or Thioglycosides from Unprotected Reducing Sugars. J. Org. Chem. 2004, 69, 7758–7760. [Google Scholar] [CrossRef]
- Kartha, K.P.R.; Field, R.A. Iodine: A versatile reagent in carbohydrate chemistry IV. Per-O-Acetylation, regioselective acylation and acetolysis. Tetrahedron 1997, 53, 11753–11766. [Google Scholar] [CrossRef]
- Lindhorst, T.K. Essentials of Carbohydrate Chemistry and Biochemistry, 2nd ed.; Wiley-WCH Verlag Gmbh & Co: Weinheim, Germany, 2003. [Google Scholar]
- Liu, H.M.; Yan, X.; Li, W.; Huang, C. A mild and selective method for cleavage of O-acetyl groups with dibutyltin oxide. Carbohydr. Res. 2002, 337, 1763–1767. [Google Scholar] [CrossRef]
- Mizuno, M.; Kobayashi, K.; Nakajima, H.; Koya, M.; Inazu, T. Unexpected reaction using methanol dried over molecular sieves. Synth. Commun. 2002, 32, 1665–1670. [Google Scholar] [CrossRef]
- Wang, S.M.; Ge, W.Z.; Liu, H.M.; Zou, D.P.; Yan, X.B. Syntheses of acetylated steroid glycosides and selective cleavage of O-acetyl groups in sugar moiety. Steroids 2004, 69, 599–604. [Google Scholar] [CrossRef]
- Wang, S.M.; Zhang, Y.B.; Liu, H.M.; Yu, G.B.; Wang, K.R. Mild and selective deprotection method of acetylated steroids and diterpenes by dibutyltin oxide. Steroids 2007, 72, 26–30. [Google Scholar] [CrossRef]
- Rosenberry, T.L.; Brazzolotto, X.; Macdonald, I.R.; Wandhammer, M.; Trovaslet-Leroy, M.; Darvesh, S.; Nachon, F. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017, 22, 2098. [Google Scholar] [CrossRef]
- Katalinić, M.; Rusak, G.; Domaćinović Barović, J.; Šinko, G.; Jelić, D.; Antolović, R.; Kovarik, Z. Structural aspects of flavonoids as inhibitors of human butyrylcholinesterase. Eur. J. Med. Chem. 2010, 45, 186–192. [Google Scholar] [CrossRef]
- Meden, A.; Knez, D.; Jukič, M.; Brazzolotto, X.; Gršič, M.; Pišlar, A.; Zahirović, A.; Kos, J.; Nachon, F.; Svete, J.; et al. Tryptophan-derived butyrylcholinesterase inhibitors as promising leads against Alzheimer’s disease. Chem. Commun. 2019, 55, 3765–3768. [Google Scholar] [CrossRef]
- Chalupova, K.; Korabecny, J.; Bartolini, M.; Monti, B.; Lamba, D.; Caliandro, R.; Pesaresi, A.; Brazzolotto, X.; Gastellier, A.-J.; Nachon, F.; et al. Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur. J. Med. Chem. 2019, 168, 491–514. [Google Scholar] [CrossRef]
- Bušić, V.; Katalinić, M.; Šinko, G.; Kovarik, Z.; Gašo-Sokač, D. Pyridoxal oxime derivative potency to reactivate cholinesterases inhibited by organophosphorus compounds. Toxicol. Lett. 2016, 262, 114–122. [Google Scholar] [CrossRef]
- Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth, C.; Axelsen, P.H.; Silman, I.; Sussman, J.L. Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 1993, 90, 9031–9035. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2005, 2, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Katalinić, M.; Maček Hrvat, N.; Baumann, K.; Morasi Piperčić, S.; Makarić, S.; Tomić, S.; Jović, O.; Hrenar, T.; Miličević, A.; Jelić, D.; et al. comprehensive evaluation of novel oximes in creation of butyrylcholinesterase-based nerve agent bioscavengers. Toxicol. Appl. Pharmacol. 2016, 310, 195–204. [Google Scholar] [CrossRef]
- Kumar, A.; Darreh-Shori, T. DMSO: A mixed-competitive inhibitor of human acetylcholinesterase. ACS Chem. Neurosci. 2017, 8, 2618–2625. [Google Scholar] [CrossRef]
- Kovarik, Z.; Bosak, A.; Šinko, G.; Latas, T. Exploring active sites of cholinesterases by inhibition with bambuterol and haloxon. Croat. Chem. Acta 2003, 76, 63–67. [Google Scholar]
- Ellman, G.L.; Courtney, D.; Andreas, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholineesterase activity. Biochem. Pharm. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Eyer, P.; Worek, F.; Kiderlen, D.; Sinko, G.; Stuglin, A.; Simeon-Rudolf, V.; Reiner, E. Molar absorption coefficients for the reduced Ellman reagent: Reassessment. Anal. Biochem. 2003, 312, 224–227. [Google Scholar] [CrossRef]
- Copeland, R.A. Evaluation of Enzyme Inhibitors in Drug Discovery; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Momany, F.A.; Rone, R. Validation of the general purpose QUANTA 3.2/CHARMm force field. J. Comp. Chem. 1992, 13, 888–900. [Google Scholar] [CrossRef]
- Ngamelue, M.N.; Homma, K.; Lockridge, O.; Asojo, O.A. Crystallization and X-ray structure of full-length recombinant human butyrylcholinesterase. Acta Cryst. Sect. F 2007, 63, 723–727. [Google Scholar] [CrossRef]
- Maraković, N.; Knežević, A.; Vinković, V.; Kovarik, Z.; Šinko, G. Design and synthesis of N-substituted-2-hydroxyiminoacetamides and interactions with cholinesterases. Chem. Boil. Interact. 2016, 259, 122–132. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | Sugar/Glycon | Heterocycle/Aglycon | Substitution Position on Aglycon | Concentration (μM) | Ki ± SEM (μM) 1 | α ± SEM 1 |
---|---|---|---|---|---|---|
1 | D-GLUCOSE | Pyridine (Py) | N | 10–140 | n.d.2 | n.d.2 |
2 | Imidazole (Im) | N1 | 10–150 | n.d.2 | n.d.2 | |
3 | 1-methylimidazole (MeIm) | N3 | 10–150 | n.d.2 | n.d.2 | |
4 | 1-benzylimidazole (BnIm) | N3 | 10–150 | n.d.2 | n.d.2 | |
5 | Benzimidazole (BIm) | N1 | 20–240 | 16 ± 1.6 | 3.3 ± 0.7 | |
6 | 1-methylbenzimidazole (MeBIm) | N3 | 10–120 | n.d.2 | n.d.2 | |
7 | 1-benzylbenzimidazole (BnBIm) | N3 | 10–110 | 52 ± 3.0 | 5.1 ± 0.8 | |
8 | D-GALACTOSE | Pyridine (Py) | N | 10–110 | n.d.2 | n.d.2 |
9 | Imidazole (Im) | N1 | 15–200 | n.d.2 | n.d.2 | |
10 | 1-methylimidazole (MeIm) | N3 | 10–160 | n.d.2 | n.d.2 | |
11 | 1-benzylimidazole (BnIm) | N3 | 15–160 | n.d.2 | n.d.2 | |
12 | Benzimidazole (BIm) | N1 | 15–170 | 782 ± 306 | 2.1 ± 1.7 | |
13 | 1-methylbenzimidazole (MeBIm) | N3 | 10–140 | n.d.2 | n.d.2 | |
14 | 1-benzylbenzimidazole (BnBIm) | N3 | 15–160 | 26 ± 2.7 | 5.2 ± 1.4 |
Physicochemical Properties | ||||||
---|---|---|---|---|---|---|
Compound | MW 1 | logP 2 | HBD 3 | HBA 4 | RB 5 | PSA 6 |
1 | 286 | –0.85 | 4 | 2 | 5 | 107 |
2 | 275 | –1.23 | 5 | 2 | 5 | 122 |
3 | 289 | –1.02 | 4 | 2 | 5 | 112 |
4 | 365 | 0.56 | 4 | 2 | 7 | 112 |
5 | 325 | 0.26 | 5 | 2 | 5 | 122 |
6 | 339 | 0.47 | 4 | 2 | 5 | 112 |
7 | 415 | 2.05 | 4 | 2 | 7 | 112 |
Donepezil | 379 | 4.57 | 0 | 3 | 6 | 39 |
Galantamine | 287 | 1.44 | 1 | 2 | 1 | 42 |
Rivastigmine | 250 | 2.60 | 0 | 2 | 5 | 33 |
The recommended values for CNS drugs [32] | 450 | 5 | 3 | 7 | 8 | 70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumann, K.; Kordić, L.; Močibob, M.; Šinko, G.; Tomić, S. Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors. Molecules 2019, 24, 2833. https://doi.org/10.3390/molecules24152833
Baumann K, Kordić L, Močibob M, Šinko G, Tomić S. Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors. Molecules. 2019; 24(15):2833. https://doi.org/10.3390/molecules24152833
Chicago/Turabian StyleBaumann, Krešimir, Lorena Kordić, Marko Močibob, Goran Šinko, and Srđanka Tomić. 2019. "Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors" Molecules 24, no. 15: 2833. https://doi.org/10.3390/molecules24152833
APA StyleBaumann, K., Kordić, L., Močibob, M., Šinko, G., & Tomić, S. (2019). Synthesis and In Vitro Screening of Novel Heterocyclic β-d-Gluco- and β-d-Galactoconjugates as Butyrylcholinesterase Inhibitors. Molecules, 24(15), 2833. https://doi.org/10.3390/molecules24152833