Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioactive Compounds in OFI Cladodes: Polyphenols, Dietary Fibre, Minerals
2.1.1. Polyphenols Characterization
2.1.2. Dietary Fibre Determination
2.1.3. Ion Contents in Opuntia ficus indica Cladodes
2.2. Antioxidant Activity
2.3. In Vitro Digestion to Evaluate the Polyphenols and Minerals Bioaccessibility
2.3.1. Polyphenol Bioaccessibility
2.3.2. Cations’ Bioaccessibility
3. Materials and Methods
3.1. Reagents
3.2. Plant Materials
3.3. Extraction and Characterization of Phenolic Compound from OFI Cladodes
3.4. Dietary Fibre Determination
3.4.1. Extraction of Soluble Fibre: Mucilage and Pectin Fractions
3.4.2. Polysaccharide Hydrolysis and Analysis
3.4.3. Estimation of Polysaccharides
3.5. Mineral Determination
3.5.1. Cation Content of OFI Cladodes
3.5.2. Anion Content of OFI cladodes
3.6. Antioxidant Activity
3.6.1. DPPH Assay
3.6.2. ABTS Assay
3.7. In Vitro Digestion to Evaluate the Polyphenols and Mineral Bioaccessibility
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paiva, P.M.G.; de Souza, I.F.A.C.; Costa, M.C.V.V.; Santos, A.D.F.S.; Coelho, L.C.B.B. Opuntia sp. Cactus: Biological characteristics, cultivation and applications. Adv. Res. 2016, 7, 1–14. [Google Scholar] [CrossRef]
- Monjauze, A.; Le Houérou, H.N. Le rôle des Opuntia dans l’économie agricole Nord Africaine. In Bulletin de l’École Nationale Supérieure d’Agriculture; L’Ecole: Tunis, Tunisia, 1965; pp. 85–164. [Google Scholar]
- Griffith, M.P. The origins of an important cactus crop, Opuntia Ficus Indica (Cactaceae): New molecular evidence. Am. J. Bot. 2004, 91, 1915–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inglese, P.; Basile, F.; Schirra, M. Cactus Pear Fruit Production In Cacti: Biology and Uses; Nobel, P.S., Ed.; University of California Press: Berkeley and Los Angeles, CA, USA, 2002; pp. 163–183. [Google Scholar]
- Malainine, M.E.; Dufresne, A.; Dupeyre, D.; Mahrouz, M.; Vuong, R.; Vignon, M.R. Structure and morphology of cladodes and spines of Opuntia ficus-indica. Cellulose extraction and characterisation. Carbohyd. Polym. 2003, 51, 77–83. [Google Scholar] [CrossRef]
- del Socorro Santos Díaz, M.; Barba de la Rosa, A.P.; Héliès-Toussaint, C.; Guéraud, F.; Nègre-Salvayre, A. Opuntia spp.: Characterization and benefits in chronic diseases. Oxid. Med. Cell Longev. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barba, F.J.; Putnik, P.; Kovačević, D.B.; Poojary, M.M.; Roohinejad, S.; Lorenzo, J.M.; Koubaa, M. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci. Technol. 2017, 67, 260–270. [Google Scholar] [CrossRef]
- Msaddak, L.; Abdelhedi, O.; Kridene, A.; Rateb, M.; Belbahri, L.; Ammar, E.; Zouari, N. Opuntia ficus-indica cladodes as a functional ingredient: bioactive compounds profile and their effect on antioxidant quality of bread. Lipids Health Dis. 2017, 16. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Tapia, M.; Aguilar-López, M.; Pérez-Cruz, C.; Pichardo-Ontiveros, E.; Wang, M.; Donovan, S.M.; Tovar, A.R.; Torres, N. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Knishinsky, R. Prickly Pear Cactus Medicine: Treatments for Diabetes, Cholesterol, and the Immune System; Inner Traditions, Bear & Co.: Rochester, VT, USA, 2004. [Google Scholar]
- Stintzing, F.C.; Carle, R. Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Mol. Nutr. Food Res. 2005, 49, 175–194. [Google Scholar] [CrossRef]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. Int. J. Food Sci. Tech. 2012, 49, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Ayadi, M.A.; Abdelmaksoud, W.; Ennouri, M.; Attia, H. Cladodes from Opuntia ficus indica as a source of dietary fiber: Effect on dough characteristics and cake making. Ind. Crop. Prod. 2009, 30, 40–47. [Google Scholar] [CrossRef]
- Mata, A.; Ferreira, J.P.; Semedo, C.; Serra, T.; Duarte, C.M.M.; Bronze, M.R. Contribution to the characterization of Opuntia spp. juices by LC–DAD–ESI-MS/MS. Food Chem. 2016, 210, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Corral-Aguayo, R.D.; Yahia, E.M.; Carrillo-López, A.; González-Aguilar, G. Correlation between some nutritional components and the total antioxidant capacity measured with six different assays in eight horticultural crops. J. Agr. Food Chem. 2008, 56, 10498–10504. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Figuero, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.W.; De Leon-Rodrıguez, A.; Fomsgaard, I.S.; de la Rosa, A.P. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J. Food Compos. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- Sánchez, E.; Dávila-Aviña, J.; Castillo, S.L.; Heredia, N.; Vázquez-Alvarado, R.; García, S. Antibacterial and antioxidant activities in extracts of fully grown cladodes of 8 cultivars of cactus pear. J. Food Sci. 2014, 79, 659–664. [Google Scholar] [CrossRef]
- Aguilera-Barreiro, M.D.L.A.; Rivera-Márquez, J.A.; Trujillo-Arriaga, H.M.; Tamayo y Orozco, J.A.; Barreira-Mercado, E.; Rodríguez-García, M.E. Intake of dehydrated nopal (Opuntia ficus indica) improves bone mineral density and calciuria in adult Mexican women. Food Nutr. Res. 2013, 57. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Padilla, M.; Rivera-Muñoz, E.M.; Gutiérrez-Cortez, E.; Del López, A.R.; Rodríguez-García, M.E. Characterization of crystalline structures in Opuntia ficus-indica. J. Biol. Phys. 2015, 41, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Astello-García, M.G.; Cervantes, I.; Nair, V.; del Socorro Santos-Díaz, M.; Reyes-Agüero, A.; Guéraud, F.; Negre-Salvayre, A.; Rossignol, M.; Cisneros-Zevallos, L.; de la Rosa, A.P.B. Chemical composition and phenolic compounds profile of cladodes from Opuntia spp. cultivars with different domestication gradient. J. Food Compos. Anal. 2015, 43, 119–130. [Google Scholar] [CrossRef]
- Contreras-Padilla, M.; Gutiérrez-Cortez, E.; del Carmen Valderrama-Bravo, M.; Rojas-Molina, I.; Espinosa-Arbeláez, D.G.; Suárez-Vargas, R.; Rodríguez-García, M.E. Effects of drying process on the physicochemical properties of nopal cladodes at different maturity stages. Plant Food Hum. Nutr. 2012, 67, 44–49. [Google Scholar] [CrossRef]
- De Santiago, E.; Domínguez-Fernández, M.; Cid, C.; De Peña, M.P. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). Food Chem. 2018, 240, 1055–1062. [Google Scholar] [CrossRef]
- Medina-Torres, L.; Vernon-Carter, E.J.; Gallegos-Infante, J.A.; Rocha-Guzman, N.E.; Herrera-Valencia, E.E.; Calderas, F.; Jiménez-Alvarado, R. Study of the antioxidant properties of extracts obtained from nopal cactus (Opuntia ficus-indica) cladodes after convective drying. J. Sci. Food Agric. 2011, 91, 1001–1005. [Google Scholar] [CrossRef]
- Ginestra, G.; Parker, M.L.; Bennett, R.N.; Robertson, J.; Mandalari, G.; Narbad, A.; Lo Curto, R.B.; Bisignano, G.; Faulds, C.B.; Waldron K., W. Anatomical, chemical, and biochemical characterization of cladodes from Prickly Pear [Opuntia ficus-indica (L.) Mill.]. J. Agr. Food Chem. 2009, 57, 10323–10330. [Google Scholar] [CrossRef] [PubMed]
- De Santiago, E.; Pereira-Caro, G.; Moreno-Rojas, J.M.; Cid, C.; De Peña, M.P. Digestibility of (Poly)phenols and Antioxidant Activity in Raw and Cooked Cactus Cladodes (Opuntia ficus-indica). J. Agr. Food Chem. 2018, 66, 5832–5844. [Google Scholar] [CrossRef] [PubMed]
- Bayar, N.; Kriaa, M.; Kammoun, R. Extraction and characterization of three polysaccharides extracted from Opuntia ficus indica cladodes. Int. J. Biol. Macromol. 2016, 92, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Bagherian, H.; Ashtiani, F.Z.; Fouladitajar, A.; Mohtashamy, M. Comparisons between conventional, microwave-and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem. Eng. Process 2011, 50, 1237–1243. [Google Scholar] [CrossRef]
- Sàenz, C.; Sepùlveda, E.; Matsuhiro, B. Opuntia spp. mucilage’s: A functional component with industrial perspectives. J. Arid. Environ. 2004, 57, 275–290. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Silipo, A.; Molinaro, A.; Parrilli, M.; Schiraldi, C.; D’Agostino, A.; Izzo, E.; Rizza, L.; Bonina, F.; Lanzetta, R. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties. Carbohydr. Polym. 2017, 157, 128–136. [Google Scholar] [CrossRef]
- Rocchetti, G.; Pellizzoni, M.; Montesano, D.; Lucini, L. Italian Opuntia ficus-indica cladodes as rich source of bioactive compounds with health-promoting properties. Foods 2018, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Urbiola, M.I.; Pérez-Torrero, E.; Rodríguez-García, M.E. Chemical analysis of nutritional content of prickly pads (Opuntia ficus indica) at varied ages in an organic harvest. Int. J. Environ. Res. Public Health 2011, 8, 1287–1295. [Google Scholar] [CrossRef] [Green Version]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- Nerd, A.; Nobel, P.S. Accumulation, partitioning, and assimilation of nitrate in Opuntia ficus-indica. J. Plant Nutr. 1995, 18, 2533–2549. [Google Scholar] [CrossRef]
- Gupta, S.; Lakshmi, A.J.; Prakash, J. In vitro bioavailability of calcium and iron from selected green leafy vegetables. J. Sci. Food Agric. 2006, 86, 2147–2152. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar]
- Andreu, L.; Nuncio-Jáuregui, N.; Carbonell-Barrachina, Á.A.; Legua, P.; Hernández, F. Antioxidant properties and chemical characterization of Spanish Opuntia ficus-indica Mill. cladodes and fruits. J. Sci. Food Agric. 2018, 98, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Tech. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Ishii, T. Structure and functions of feruloylated polysaccharides. Plant Sci. 1997, 127, 111–127. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Marques, C.D.; Sánchez-Mata, M.C.; Goñi, I. In vitro calcium bioaccessibility in raw and cooked cladodes of prickly pear cactus (Opuntia ficus-indica L. Miller). Food Sci. Technol. 2011, 44, 1611–1615. [Google Scholar] [CrossRef]
- D’Imperio, M.; Renna, M.; Cardinali, A.; Buttaro, D.; Serio, F.; Santamaria, P. Calcium biofortification and bioaccessibility in soilless “baby leaf” vegetable production. Food Chem. 2016, 213, 149–156. [Google Scholar] [CrossRef]
- D’Imperio, M.; Montesano, F.F.; Renna, M.; Parente, A.; Logrieco, A.F.; Serio, F. Hydroponic Production of Reduced-Potassium Swiss Chard and Spinach: A Feasible Agronomic Approach to Tailoring Vegetables for Chronic Kidney Disease Patients. Agronomy 2019, 9, 627. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.R.; Smolen, L.J.; Klein, T.M.; Klein, R.W. The cost effectiveness of teriparatide as a first-line treatment for glucocorticoid-induced and postmenopausal osteoporosis patients in Sweden. BMC Musculoskel. Dis. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism and nutrional significance. Nutr. Rev. 1999, 56, 317–333. [Google Scholar] [CrossRef]
- Santos-Zea, L.; Gutiérrez-Uribe, J.A.; Serna-Saldivar, S.O. Comparative analyses of total phenols, antioxidant activity, and flavonol glycoside profile of cladode flours from different varieties of Opuntia spp. J. Agr. Food Chem. 2011, 59, 7054–7061. [Google Scholar] [CrossRef] [PubMed]
- Bayar, N.; Bouallegue, T.; Achour, M.; Kriaa, M.; Bougatef, A.; Kammoun, R. Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: Optimization of experimental conditions and evaluation of chemical and functional properties. Food Chem. 2017, 235, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Fengel, D.; Wegener, G. Hydrolysis of polysaccharides with trifluoroacetic acid and its application to rapid wood and pulp analysis. In Hydrolysis of Cellulose: Mechanisms of Enzymatic and Acid Catalysis, Advances Chemistry; Brown, R.D., Jurasek, L., Eds.; American Chemical Society: Washington, WA, USA, 1979; pp. 146–158. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 2008, 1617, 1–16. [Google Scholar]
- Liao, H.; Dong, W.; Shi, X.; Liu, H.; Yuan, K. Analysis and comparison of the active components and antioxidant activities of extracts from Abelmoschus esculentus L. Pharmacogn. Mag. 2012, 8, 156–161. [Google Scholar] [PubMed] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- D’Antuono, I.; Garbetta, A.; Ciasca, B.; Linsalata, V.; Minervini, F.; Lattanzio, V.M.T.; Logrieco, A.F.; Cardinali, A. Biophenols from table olive cv Bella di Cerignola: Chemical characterization, bioaccessibility, and intestinal absorption. J. Agr. Food Chem. 2016, 64, 5671–5678. [Google Scholar] [CrossRef]
Sample Availability: Samples of the Opuntia cladode powder are available from the authors. |
Compounds | mg/100 g OFI | |
---|---|---|
1 | Piscidic acid I | 967.2 ± 35.9 |
2 | Piscidic acid II | 17.6 ± 5.2 |
3 | Ferulic acid derivative I | 6.5 ± 0.3 |
4 | Eucomic acid | 48.8 ± 2.2 |
5 | Ferulic acid derivative II | 3.6 ± 0.4 |
6 | Kaempferol derivative I | 6.8 ± 1.7 |
7 | Isorhamnetin derivative I | 254.4 ± 31.8 |
8 | Isorhamnetin derivative II | 54.4 ± 5.9 |
9 | Kaempferol derivative II | 1.7 ± 0.3 |
10 | Isorhamnetin derivative III | 9.3 ± 2.0 |
11 | Isorhamnetin 3-O rutinoside (narcissin) | 75.2 ± 8.8 |
Total | 1446.8 ± 67.0 |
Yield (g/100 g OFI) | Total Sugar Content (g/100 g Fraction) | |
---|---|---|
Mucilage | 18.52 ± 1.76 | 9.19 ± 0.54 |
Pectin | 7.11 ± 1.03 | 66.40 ± 4.11 |
Pectin/mucilage | 12.06 ± 0.77 | 60.30 ± 5.75 |
Ions | Concentration (mg/ g OFI) |
---|---|
Cations | |
Sodium | 19.18 ± 1.05 |
Potassium | 16.84 ± 0.68 |
Magnesium | 13.80 ± 1.37 |
Calcium | 75.18 ± 1.62 |
Anions | |
Nitrate | 0.58 ± 0.06 |
Sulphate | 6.26 ± 0.70 |
Chloride | 7.52 ± 0.30 |
Oxalate | 1.05 ± 0.06 |
TEAC (μmol Trolox Equivalent/100 g OFI) | |
---|---|
ABTS | 775 ± 131 |
DPPH | 740 ± 110 |
Digested (mg/100 g OFI) | Bioaccessibility (%) | ||
---|---|---|---|
Polyphenols | |||
1 | Piscidic acid I | 2018.9 ± 45.3 | 208.7 |
2 | Piscidic acid II | 21.4 ± 2.3 | 121.3 |
3 | Ferulic acid derivative I | 8.1 ± 0.2 | 123.8 |
4 | Eucomic acid | 56.7 ± 0.8 | 116.2 |
5 | Ferulic acid derivative II | 3.2 ± 0.1 | 88.6 |
6 | Kaempferol derivative I | 7 ± 0.2 | 102 |
7 | Isorhamnetin derivative I | 249.5 ± 7.4 | 98.1 |
8 | Isorhamnetin derivative II | 48.6 ± 1.4 | 89.4 |
9 | Kaempferol derivative II | 1.6 ± 0.1 | 96.5 |
10 | Isorhamnetin derivative III | 8.4 ± 0.3 | 90.7 |
11 | Isorhamnetin 3-O rutinoside (narcissin) | 66.9 ± 2.1 | 88.9 |
Total polyphenols | 2490.4 ± 55.6 | 172.1 | |
Cations | |||
Potassium | 883.7 ± 34.5 | 52.5 | |
Magnesium | 1279.0 ± 75.1 | 92.7 | |
Calcium | 2373.0 ± 106.9 | 31.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Missaoui, M.; D’Antuono, I.; D’Imperio, M.; Linsalata, V.; Boukhchina, S.; Logrieco, A.F.; Cardinali, A. Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient. Molecules 2020, 25, 2176. https://doi.org/10.3390/molecules25092176
Missaoui M, D’Antuono I, D’Imperio M, Linsalata V, Boukhchina S, Logrieco AF, Cardinali A. Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient. Molecules. 2020; 25(9):2176. https://doi.org/10.3390/molecules25092176
Chicago/Turabian StyleMissaoui, Meriam, Isabella D’Antuono, Massimiliano D’Imperio, Vito Linsalata, Sadok Boukhchina, Antonio F. Logrieco, and Angela Cardinali. 2020. "Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient" Molecules 25, no. 9: 2176. https://doi.org/10.3390/molecules25092176
APA StyleMissaoui, M., D’Antuono, I., D’Imperio, M., Linsalata, V., Boukhchina, S., Logrieco, A. F., & Cardinali, A. (2020). Characterization of Micronutrients, Bioaccessibility and Antioxidant Activity of Prickly Pear Cladodes as Functional Ingredient. Molecules, 25(9), 2176. https://doi.org/10.3390/molecules25092176