Streptomyces griseus KJ623766: A Natural Producer of Two Anthracycline Cytotoxic Metabolites β- and γ-Rhodomycinone
Abstract
:1. Introduction
2. Results
2.1. Cytotoxic Activities of the Cell Free Culture Supernatant (CFCS) Ethyl Acetate Extract
2.2. Isolation and Cytotoxic Activities of the Purified Metabolites
2.3. Identification of the Recovered Cytotoxic Metabolites
2.3.1. Metabolite R1
2.3.2. Metabolite R2
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Cell Lines
4.3. Production and Isolation of Cytotoxic Agent(s) Produced by S. griseus KJ623766
4.3.1. Preparation of Seed Culture
4.3.2. Extraction of Cytotoxic Metabolite(s)
4.3.3. Recovery of Cytotoxic Metabolite(s)
4.3.4. Fermentation in a Laboratory Fermenter
4.4. Spectroscopic Analysis of the Recovered Cytotoxic Metabolites
4.5. Evaluation of the Cytotoxic Activities of the Recovered metabolites
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Law, J.W.; Law, L.N.; Letchumanan, V.; Tan, L.T.; Wong, S.H.; Chan, K.G.; Ab Mutalib, N.S.; Lee, L.H. Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules 2020, 25, 5365. [Google Scholar] [CrossRef] [PubMed]
- Mann, J. Natural products in cancer chemotherapy: Past, present and future. Nat. Rev. Cancer 2002, 2, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.R.; Pierson, F.H.; Herald, C.L. Anticancer Drugs from Animals, Plants, and Microorganisms. J. Chem. Technol. Biotechnol. 1996, 66, 106. [Google Scholar]
- Faramarzian, A.; Maragheh, B.; Fatourachi, P.; Mohammadi, S.M.; Valipour, B.; Behtari, M.; Dehnad, A.; Nozad Charoudeh, H. Streptomyces Levis ABRIINW111 Inhibits SW480 Cells Growth by Apoptosis Induction. Adv. Pharm. Bull. 2018, 8, 675–682. [Google Scholar] [CrossRef] [Green Version]
- Law, J.W.; Chan, K.G.; He, Y.W.; Khan, T.M.; Ab Mutalib, N.S.; Goh, B.H.; Lee, L.H. Diversity of Streptomyces spp. from mangrove forest of Sarawak (Malaysia) and screening of their antioxidant and cytotoxic activities. Sci. Rep. 2019, 9, 15262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.T.-H.; Ser, H.-L.; Yin, W.-F.; Chan, K.-G.; Lee, L.-H.; Goh, B.-H. Investigation of Antioxidative and Anticancer Potentials of Streptomyces sp. MUM256 Isolated from Malaysia Mangrove Soil. Front. Microbiol. 2015, 6, 1316. [Google Scholar] [CrossRef]
- Johnson-Arbor, K.; Dubey, R. Doxorubicin; StatPearls Publishing: Florida, FL, USA, 2020. [Google Scholar]
- Franco, Y.L.; Vaidya, T.R.; Ait-Oudhia, S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove. Med. Press) 2018, 11, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.B. The anthracyclines: Will we ever find a better doxorubicin? Semin. Oncol. 1992, 19, 670–686. [Google Scholar]
- Martins-Teixeira, M.B.; Carvalho, I. Antitumour Anthracyclines: Progress and Perspectives. Chem. Med. Chem. 2020, 15, 933–948. [Google Scholar] [CrossRef]
- McGuire, J.C.; Thomas, M.C.; Stroshane, R.M.; Hamilton, B.K.; White, R.J. Biosynthesis of daunorubicin glycosides: Role of epsilon-rhodomycinone. Antimicrob. Agents Chemother. 1980, 18, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, A.; Hoshino, T.; Westley, J. Anthracycline Antibiotics. Crit. Rev. Biotechnol. 1985, 3, 133–157. [Google Scholar] [CrossRef]
- Matsuzawa, Y.; Yoshimoto, A.; Oki, T.; Naganawa, H.; Takeuchi, T.; Umezawa, H. Biosynthesis of anthracycline antibiotics by Streptomyces galilaeus. II. Structure of new anthracycline antibiotics obtained by microbial glycosidation and biological activity. J. Antibiot. 1980, 33, 1341–1347. [Google Scholar] [CrossRef] [Green Version]
- Barnes, E.C.; Bezerra-Gomes, P.; Nett, M.; Hertweck, C. Dandamycin and chandrananimycin E, benzoxazines from Streptomyces griseus. J. Antibiot. 2015, 68, 463–468. [Google Scholar] [CrossRef]
- Aftab, U.; Zechel, D.L.; Sajid, I. Antitumor compounds from Streptomyces sp. KML-2, isolated from Khewra salt mines, Pakistan. Biol. Res. 2015, 48, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wendt-Pienkoski, E.; Rajski, S.R.; Shen, B. In vivo investigation of the roles of FdmM and FdmM1 in fredericamycin biosynthesis unveiling a new family of oxygenases. J. Biol. Chem. 2009, 284, 24735–24743. [Google Scholar] [CrossRef] [Green Version]
- Wander, D.P.A.; van der Zanden, S.Y.; Vriends, M.B.L.; van Veen, B.C.; Vlaming, J.G.C.; Bruyning, T.; Hansen, T.; van der Marel, G.A.; Overkleeft, H.S.; Neefjes, J.J.C.; et al. Synthetic (N,N-Dimethyl)doxorubicin Glycosyl Diastereomers to Dissect Modes of Action of Anthracycline Anticancer Drugs. J. Org. Chem. 2021, 86, 5757–5770. [Google Scholar] [CrossRef] [PubMed]
- Abu Zaid, A.S.; Aboshanab, K.M.; Yassien, M.A.; Hassouna, N.A. Improvement the production of cytotoxic metabolites by Streptomyces griseus KJ623766. Arch. Pharm. Sci. Ain. Shams. Univ. 2017, 1, 31–38. [Google Scholar] [CrossRef]
- Osada, N.; Kohara, A.; Yamaji, T.; Hirayama, N.; Kasai, F.; Sekizuka, T.; Kuroda, M.; Hanada, K. The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line. DNA Res. Int. J. Rapid. Publ. Rep. Genes. Genomes 2014, 21, 673–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johdo, O.; Yoshiyoka, T.; Takeuchi, T.; Yoshimoto, A. Isolation of new anthracyclines 10-O-rhodosaminylβ-Rhodomycinone and β-Rhodomycinone from mild acid treated culture of obelmycin producing streptomyces violaceus. J. Antibiot. 1997, 50, 522–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, C.; Mo, X.; Gu, Y.; Ju, J. Elucidating the sugar tailoring steps in cytorhodin biosynthetic pathway. Org. Lett. 2017, 19, 5617–5620. [Google Scholar] [CrossRef]
- Tsuji, T.; Morioka, H.; Takezawa, M.; Ando, T.; Murai, A.; Shibai, H. Differentiation Inducing Activity of Anthracycline Compounds in Friend Leukemia Cells. Agric. Biol. Chem. 1986, 50, 1697–1701. [Google Scholar] [CrossRef]
- Tan, L.T.H.; Chan, C.K.; Chan, K.G.; Pusparajah, P.; Khan, T.M.; Ser, H.L.; Lee, L.H.; Goh, B.H. Streptomyces. sp. MUM256: A source for apoptosis inducing and cell cycle-arresting bioactive compounds against colon cancer cells. Cancers 2019, 11, 1742. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Kwon, Y.; Bang, S.; Kwon, H.E.; Park, S.; Lee, Y.; Deyrup, S.T.; Song, G.; Lee, D.; Joo, H.S.; et al. Unusual bridged angucyclinones and potent anticancer compounds from Streptomyces bulli GJA1. Org. Biomol. Chem. 2020, 18, 8443–8449. [Google Scholar] [CrossRef] [PubMed]
- Supong, K.; Sripreechasak, P.; Phongsopitanun, W.; Tanasupawat, S.; Danwisetkanjana, K.; Bunbamrung, N.; Pittayakhajonwut, P. Antimicrobial substances from the rare actinomycete Nonomuraea rhodomycinica NR4-ASC07T. Nat. Prod. Res. 2019, 33, 2285–2291. [Google Scholar] [CrossRef]
- Venkatesh, P.; Kasi, A. Anthracyclines; StatPearls Publishing: Florida, FL, USA, 2020; Available online: https://pubmed.ncbi.nlm.nih.gov/30844214/ (accessed on 10 March 2021).
- Kim, E.; Song, M.C.; Kim, M.S.; Beom, J.Y.; Jung, J.A.; Cho, H.S.; Yoon, Y.J. One-Pot Combinatorial Biosynthesis of Glycosylated Anthracyclines by Cocultivation of Streptomyces Strains Producing Aglycones and Nucleotide Deoxysugars. ACS Comb. Sci. 2017, 19, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Gui, C.; Yuan, J.; Mo, X.; Huang, H.; Zhang, S.; Gu, Y.; Ju, J. Cytotoxic Anthracycline Metabolites from a Recombinant Streptomyces. J. Nat. Prod. 2018, 81, 1278–1289. [Google Scholar] [CrossRef] [PubMed]
- Han, A.R.; Park, J.W.; Lee, M.K.; Ban, Y.H.; Yoo, Y.J.; Kim, E.J.; Kim, E.; Kim, B.G.; Sohng, J.K.; Yoon, Y.J. Development of a Streptomyces venezuelae-based combinatorial biosynthetic system for the production of glycosylated derivatives of doxorubicin and its biosynthetic intermediates. Appl. Environ. Microbiol. 2011, 77, 4912–4923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baindara, P.; Mandal, S.M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie 2020, 177, 164–189. [Google Scholar] [CrossRef] [PubMed]
- Ab Mutalib, N.S.; Wong, S.H.; Ser, H.L.; Duangjai, A.; Law, J.W.; Ratnakomala, S.; Tan, L.T.H.; Letchumanan, V. Bioprospecting of microbes for valuable compounds to mankind. Prog. Microbes Mol. Biol. 2020, 3, a0000088. [Google Scholar] [CrossRef]
- Yin, P.; Wang, Y.-H.; Zhang, S.-L.; Chu, J.; Zhuang, Y.-P.; Wang, M.-L.; Zhou, J. Isolation of soluble proteins from an industrial strain Streptomyces avermitilis in complex culture medium for two-dimensional gel electrophoresis. J. Microbiol. Methods 2008, 73, 105–110. [Google Scholar] [CrossRef]
- Radwan, H.H.; Moussa, I.M.; Alsarra, I.A. Optimization of a fed-batch fermentation process for production of bleomycin by Streptomyces mobaraensis ATCC 15003. Afr. J. Biotechnol. 2011, 10, 1690–1965. [Google Scholar]
- Maskey, R.P.; Helmke, E.; Kayser, O.; Fiebig, H.H.; Maier, A.; Busche, A.; Laatsch, H. Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J. Antibiot. 2004, 57, 771–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atta, H.M.; El-Sehrawi, M.H.; Bahobail, A.S. Antifungal Macrodiode Production by Streptomyces albidoflavus-143: Fermentation, Purification and Biological Activities. Am. J. Sci. 2011, 7, 13–22. [Google Scholar]
- Van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Sudha, S.; Masilamani, S.M. Characterization of cytotoxic compound from marine sediment derived actinomycete Streptomyces avidinii strain SU4. Asian Pac. J. Trop. Biomed 2012, 2, 770–773. [Google Scholar] [CrossRef] [Green Version]
Tested Metabolite | Average Cytotoxic Activity (CD50) against Different Cell Lines (µg/mL) ±SD | ||
---|---|---|---|
Caco2 | Hela | Vero | |
Ethyl acetate extract | 14 ± 0.88 | 20 ± 0.52 | nd |
Fraction SG-3 | 9.4 ± 0.63 | 12.2 ± 0.62 | nd |
R1 | 6.3 ± 0.35 | 9.45 ± 0.25 | 64.8 ± 0.88 |
R2 | 6.3 ± 0.35 | 9.35 ± 0.45 | 67.3 ± 0.37 |
doxorubicin | 1.25 ± 0.5 | 1.7 ± 0.6 | nd |
Position | δH (CDCl3, 400 MHz, J in Hz), Metabolite R1 | δH (CDCl3, 400 MHz, J in Hz), Metabolite R2 | δH (CDCl3)γ-Rhodomycinone (Standard) |
---|---|---|---|
1 | 7.93 (dd, 7.4, 1.2, 1H) | 7.91 (dd, 7.8, 1.0, 1H) | 7.89 (d, 6.6, 1.1, 1H) |
2 | 7.76 (t, 8.0, 1H) | 7.73 (t, 8.0, 1H) | 7.72 (t, 8.07, 1H) |
3 | 7.37 (dd, 8.4, 1.2, 1H) | 7.35 (dd, 8.2, 1.0, 1H) | 7.31 (d, 7.33, 1.1, 1H) |
7 | 5.26 (m, 1H) | 7a: 2.98 (m, 1H), 7b: 2.90 (m, 1H) | 5.24 (d, 5.14) |
8a | 2.19 (m, 1H) | 1.98 (m, 1H) | 2.29–2.14 (m, 2H) |
8b | 2.22 (m, 1H) | 2.35 (m, 1H) | |
10 | 4.91 (s, 1H) | 4.82 (s, 1H) | 5 (s, 1H) |
4-OH | 12.15 (s, 1H) | 12.27 (s, 1H) | 12.20 (s, 1H) |
6-OH | 12.91 (s, 1H) | 12.77 (s, 1H) | 12.90 (s, 1H) |
11-OH | 13.61 (s, 1H) | 13.87 (s, 1H) | 13.60 (s, 1H) |
1′a | 1.81 (m, 1H) | 1.95 (m, 1H) | 1.74–1.85 (m, 2H) |
1′b | 1.92 (m, 1H) | 2.00 (m, 1H) | |
2′ | 1.15 (t, 7.5, 3H) | 1.13 (t, 7.5, 3H) | 1.12 (t, 7.34, 3H) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaid, A.S.A.; Aleissawy, A.E.; Yahia, I.S.; Yassien, M.A.; Hassouna, N.A.; Aboshanab, K.M. Streptomyces griseus KJ623766: A Natural Producer of Two Anthracycline Cytotoxic Metabolites β- and γ-Rhodomycinone. Molecules 2021, 26, 4009. https://doi.org/10.3390/molecules26134009
Zaid ASA, Aleissawy AE, Yahia IS, Yassien MA, Hassouna NA, Aboshanab KM. Streptomyces griseus KJ623766: A Natural Producer of Two Anthracycline Cytotoxic Metabolites β- and γ-Rhodomycinone. Molecules. 2021; 26(13):4009. https://doi.org/10.3390/molecules26134009
Chicago/Turabian StyleZaid, Ahmed S. Abu, Ahmed E. Aleissawy, Ibrahim S. Yahia, Mahmoud A. Yassien, Nadia A. Hassouna, and Khaled M. Aboshanab. 2021. "Streptomyces griseus KJ623766: A Natural Producer of Two Anthracycline Cytotoxic Metabolites β- and γ-Rhodomycinone" Molecules 26, no. 13: 4009. https://doi.org/10.3390/molecules26134009
APA StyleZaid, A. S. A., Aleissawy, A. E., Yahia, I. S., Yassien, M. A., Hassouna, N. A., & Aboshanab, K. M. (2021). Streptomyces griseus KJ623766: A Natural Producer of Two Anthracycline Cytotoxic Metabolites β- and γ-Rhodomycinone. Molecules, 26(13), 4009. https://doi.org/10.3390/molecules26134009