Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Silica/PS Multipods
3.3. Controlled Growth of the Silica Core
3.4. Dissolution of the PS Nodules
3.5. Assembly of the Patchy Particles
3.6. Characterization Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Adnan, M.M.; Dalod, A.R.M.; Balci, M.H.; Glaum, J.; Einarsrud, M.A. In situ synthesis of hybrid inorganic-polymer nanocomposites. Polymers 2018, 10, 1129. [Google Scholar] [CrossRef] [Green Version]
- Faustini, M. Sol-gel engineering to tune structural colours. J. Sol-Gel Sci. Technol. 2020, 95, 504–516. [Google Scholar] [CrossRef]
- Erigoni, A.; Diaz, U. Porous silica-based organic-inorganic hybrid catalysts: A review. Catalysts 2021, 11, 79. [Google Scholar] [CrossRef]
- Thorkelsson, K.; Bai, P.; Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10, 48–66. [Google Scholar] [CrossRef] [Green Version]
- Morphew, D.; Chakrabarti, D. Clusters of anisotropic colloidal particles: From colloidal molecules to supracolloidal structures. Curr. Opin. Colloid Interface Sci. 2017, 30, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Wu, Y.; Zhao, S. Anisotropic colloids: From non-templated to patchy templated synthesis. Chem. Eur. J. 2018, 24, 10562–10570. [Google Scholar] [CrossRef]
- Xu, W.; Li, Z.; Yin, Y. Colloidal assembly approaches to micro/nanostructures of complex morphologies. Small 2018, 14, 1801083. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, R.; Yan, X.Y.; Guo, Q.Y.; Huang, J.; Shan, W.; Liu, Y.; Huang, M.; Cheng, S.Z.D. The role of architectural engineering in macromolecular self-assemblies via non-covalent interactions: A molecular LEGO approach. Prog. Polym. Sci. 2020, 103, 101230. [Google Scholar] [CrossRef]
- Bouju, X.; Duguet, E.; Gauffre, F.; Henry, C.R.; Kahn, M.L.; Mélinon, P.; Ravaine, S. Non-isotropic self-assembly of nanoparticles: From compact packing to functional aggregates. Adv. Mater. 2018, 30, 1706558. [Google Scholar] [CrossRef] [Green Version]
- Tréguer-Delapierre, M.; Madeira, A.; Hubert, C.; Ravaine, S. Recent advances in the synthesis of anisotropic particles. In Anisotropic Particle Assemblies; Wu, N., Lee, D., Striolo, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–35. [Google Scholar] [CrossRef]
- Anu Mary Ealia, S.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar] [CrossRef]
- He, M.; Gales, J.P.; Ducrot, E.; Gong, Z.; Yi, G.R.; Sacanna, S.; Pine, D.J. Colloidal diamond. Nature 2020, 585, 524–529. [Google Scholar] [CrossRef]
- Pazos-Perez, N.; Wagner, C.S.; Romo-Herrera, J.M.; Liz-Marzán, L.M.; García de Abajo, F.J.; Wittemann, A.; Fery, A.; Alvarez-Puebla, R.A. Organized plasmonic clusters with high coordination number and extraordinary enhancement in surface-enhanced Raman scattering (SERS). Angew. Chem. Int. Ed. 2012, 51, 12688–12693. [Google Scholar] [CrossRef] [Green Version]
- Schrade, A.; Cao, Z.; Landfester, K.; Ziener, U. Preparation of raspberry-like nanocapsules by the combination of Pickering emulsification and solvent displacement technique. Langmuir 2011, 27, 6689–6700. [Google Scholar] [CrossRef] [PubMed]
- Zoldesi, C.I.; Imhof, A. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater. 2005, 17, 924–928. [Google Scholar] [CrossRef]
- Wang, B.; Chen, J.S.; Wu, H.B.; Wang, Z.; Lou, X.W. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. J. Am. Chem. Soc. 2011, 133, 17146–17148. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; McLellan, J.; Xia, Y. Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells. Langmuir 2004, 20, 3464–3470. [Google Scholar] [CrossRef]
- Joo, B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. Mesoporous anatase titania hollow nanostructures though silica-protected calcination. Adv. Funct. Mater. 2012, 22, 166–174. [Google Scholar] [CrossRef]
- Chen, T.; Chen, G.; Xing, S.; Wu, T.; Chen, H. Scalable routes to Janus Au–SiO2 and ternary Ag–Au–SiO2 nanoparticles. Chem. Mater. 2010, 22, 3826–3828. [Google Scholar] [CrossRef]
- Li, W.; Palis, H.; Mérindol, R.; Majimel, J.; Ravaine, S.; Duguet, E. Colloidal molecules and patchy particles: Complementary concepts, synthesis and self-assembly. Chem. Soc. Rev. 2020, 49, 1955–1976. [Google Scholar] [CrossRef] [PubMed]
- Désert, A.; Hubert, C.; Fu, Z.; Moulet, L.; Majimel, J.; Barboteau, P.; Thill, A.; Lansalot, M.; Bourgeat-Lami, E.; Duguet, E.; et al. Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles. Angew. Chem. Int. Ed. 2013, 52, 11068–11072. [Google Scholar] [CrossRef]
- Rouet, P.E.; Khalaf, R.; Exiga, S.; Duguet, E.; Ravaine, S. Synthesis of tetrahedral patchy nanoparticles with controlled patch size. J. Nanopart. Res. 2020, 22, 337. [Google Scholar] [CrossRef]
- Hubert, C.; Chomette, C.; Désert, A.; Sun, M.; Tréguer-Delapierre, M.; Mornet, S.; Perro, A.; Duguet, E.; Ravaine, S. Synthesis of multivalent silica nanoparticles combining both enthalpic and entropic patchiness. Faraday Discuss. 2015, 181, 139–146. [Google Scholar] [CrossRef]
- Liu, K.; Nie, Z.; Zhao, N.; Li, W.; Rubinstein, M.; Kumacheva, E. Step-growth polymerization of inorganic nanoparticles. Science 2010, 329, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Choueiri, R.M.; Galati, E.; Klinkova, A.; Thérien-Aubin, H.; Kumacheva, E. Linear assembly of patchy and non-patchy nanoparticles. Faraday Discuss. 2016, 191, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Van Anders, G.; Ahmed, N.K.; Smith, R.; Engel, M.; Glotzer, S.C. Entropically patchy particles: Engineering valence through shape entropy. ACS Nano 2014, 8, 931–940. [Google Scholar] [CrossRef] [Green Version]
- Millan, J.A.; Ortiz, D.; Glotzer, S.C. Effect of shape on the self-assembly of faceted patchy nanoplates with irregular shape into tiling patterns. Soft Matter. 2015, 11, 1386–1396. [Google Scholar] [CrossRef]
- Fu, Q.; Ran, G.; Xu, W. Direct self-assembly of CTAB-capped Au nanotriangles. Nano Res. 2016, 9, 3247–3256. [Google Scholar] [CrossRef]
- Walker, D.A.; Browne, K.P.; Kowalczyk, B.; Grzybowski, B.A. Self-assembly of nanotriangle superlattices facilitated by repulsive electrostatic interactions. Angew. Chem. Int. Ed. 2010, 49, 6760–6763. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, X.; Ji, F.; Luo, B.; Ice, N.F.; Liu, Q.; Zhang, Q.; Chen, Q. Polymorphic assembly from beveled gold triangular nanoprisms. Nano Lett. 2017, 17, 3270–3275. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, U.; Escobedo, F. Mesophase behaviour of polyhedral particles. Nat. Mater. 2011, 10, 230–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, C.X.; van Anders, G.; Newman, R.S.; Glotzer, S.C. Shape-driven solid–solid transitions in colloids. Proc. Natl. Acad. Sci. USA 2017, 114, E3892–E3899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Désert, A.; Morele, J.; Taveau, J.C.; Lambert, O.; Lansalot, M.; Bourgeat-Lami, E.; Thill, A.; Spalla, O.; Belloni, L.; Ravaine, S.; et al. Multipod-like silica/polystyrene clusters. Nanoscale 2016, 8, 5454–5469. [Google Scholar] [CrossRef] [PubMed]
Precursors | Diameter of Silica Core (nm) | Diameter of PS Nodules (nm) | Morphology Purity 1 |
---|---|---|---|
Bipods | 55 ± 2 | 160 ± 6 | 79% bipods, 15% tripods, 6% monopods |
Tripods | 55 ± 2 | 145 ± 6 | 77% tripods, 9% bipods, 14% tetrapods |
Hexapods | 85 ± 2 | 130 ± 5 | 81% hexapods, 15% pentapods, 4% tetrapods |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Exiga, S.; Duguet, E.; Ravaine, S. Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio. Molecules 2021, 26, 4736. https://doi.org/10.3390/molecules26164736
Liu B, Exiga S, Duguet E, Ravaine S. Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio. Molecules. 2021; 26(16):4736. https://doi.org/10.3390/molecules26164736
Chicago/Turabian StyleLiu, Bin, Stéphanie Exiga, Etienne Duguet, and Serge Ravaine. 2021. "Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio" Molecules 26, no. 16: 4736. https://doi.org/10.3390/molecules26164736
APA StyleLiu, B., Exiga, S., Duguet, E., & Ravaine, S. (2021). Templated Synthesis and Assembly of Two-, Three- and Six-Patch Silica Nanoparticles with a Controlled Patch-to-Particle Size Ratio. Molecules, 26(16), 4736. https://doi.org/10.3390/molecules26164736