An Automated Hydrodynamically Mediated Technique for Preparation of Calibration Solutions via Capillary Electrophoresis System as a Promising Alternative to Manual Pipetting
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of the AHMT Procedure
2.2. Comparative Studies
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Stock and Standard Solutions
3.3. Calculation Parameters of the AHMT Procedure
3.4. Instrumentation
3.5. Data Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Armenta, S.; Garrigues, S.; de la Guardia, M. Green analytical chemistry. Green Chem. Res. Trends 2009, 27, 63–96. [Google Scholar] [CrossRef]
- Cerdà, V.; Ferrer, L.; Avivar, J.; Cerdà, A. Flow Analysis: A Practical Guide; Elsevier Science: Amsterdam, The Netherlands, 2014; pp. 1–42. [Google Scholar]
- Trojanowicz, M. Flow chemistry vs. flow analysis. Talanta 2016, 146, 621–640. [Google Scholar] [CrossRef] [PubMed]
- Shishov, A.; Wieczorek, M.; Kościelniak, P.; Dudek-Adamska, D.; Telk, A.; Moskvin, L.; Bulatov, A. An automated continuous homogeneous microextraction for the determination of selenium and arsenic by hydride generation atomic fluorescence spectrometry. Talanta 2018, 181, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, M.; Dębosz, M.; Świt, P.; Woźniakiewicz, A.; Kościelniak, P. Application of gradient ratio flow-injection technique to implementation of the Chemical H-point Standard Addition Method. Talanta 2018, 186, 215–220. [Google Scholar] [CrossRef] [PubMed]
- López-García, I.; Viñas, P.; Hernández-Córdoba, M. Automatic calibration in continuous flow analysis. Anal. Chim. Acta 1996, 327, 83–93. [Google Scholar] [CrossRef]
- Clavijo, S.; Avivar, J.; Suárez, R.; Cerdà, V. Analytical strategies for coupling separation and flow-injection techniques. TrAC-Trends Anal. Chem. 2015, 67, 26–33. [Google Scholar] [CrossRef]
- Kulka, S.; Quintás, G.; Lendl, B. Automated sample preparation and analysis using a sequential-injection- capillary electrophoresis (SI-CE) interface. Analyst 2006, 131, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Wills, J.D.; Wehe, C.; McSheehy-Ducos, S.; Schultz, A.; Field, P. Automated, Intelligent Sample Preparation: Integration of the ESI prepFAST Auto-Dilution System with the Thermo Scientific iCAP Q ICP-MS. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-43208-icp-ms-esi-prepfast-auto-dilution-tn43208-en.pdf (accessed on 4 October 2021).
- Thompson, L. Analysis of Potable and Wastewaters Using an Autodilution/Calibration System and ICP-OES. American Laboratory. 1 October 2013. Available online: https://www.americanlaboratory.com/914-Application-Notes/147580-Analysis-of-Potable-and-Wastewaters-Using-An-Autodilution-Calibration-System-and-ICP-OES/ (accessed on 4 October 2021).
- Khor, D.; Lorch, J.; Rohrer, J. AutoDilution Using Chromeleon 7 CDS Software and Vial-To-Vial Dilutions. Available online: https://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-182-cds-autodilution-vial-dilution-tn72159-en.pdf (accessed on 4 October 2021).
- Auto Dilution of Standard and Sample Solutions Using the SIL-30AC Autosampler. Available online: http://www.shimadzu.com.au/sites/default/files/C190-E152.pdf (accessed on 4 October 2021).
- Arce, L.; Hinsmann, P.; Novic, M.; Ríos, A.; Valcárcel, M. Automatic calibration in capillary electrophoresis. Electrophoresis 2000, 21, 556–562. [Google Scholar] [CrossRef]
- Nowak, P.M.; Woźniakiewicz, M.; Kościelniak, P. Flow variation as a factor determining repeatability of the internal standard-based qualitative and quantitative analyses by capillary electrophoresis. J. Chromatogr. A 2018, 1548, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Applied Regression Analysis. A Research Tool, 2nd ed.; Rawlings, J.O., Pantula, S.G., Dickey, D.A., Eds.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Tellinghuisen, J. Least Squares Methods for Treating Problems with Uncertainty in x and y. Anal. Chem. 2020, 92, 10863–10871. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.F. General deming regression for estimating systematic bias and its confidence interval in method-comparison studies. Clin. Chem. 2000, 46, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Alaejos, Á.C.; Cabrera, S.J.; Rodríguez, B.C.; Castañeda, A.Z. Validation and Comparison of Two Analytical Methods for Imatinib Therapeutic Drug Monitoring. Chromatographia 2021, 84, 589–596. [Google Scholar] [CrossRef]
- Iqbal, M.; Ezzeldin, E.; Anwer, K. Eco-Friendly UPLC-MS/MS Quantitation of Delafloxacin in Plasma and Its Application in a Pharmacokinetic Study in Rats. Separations 2021, 8, 146. [Google Scholar]
- Rohlfing, C.; Hanson, S.; Estey, M.P.; Bordeleau, P.; Little, R.R. Evaluation of interference from hemoglobin C, D, E and S traits on measurements of hemoglobin A1c by fifteen methods. Clin. Chim. Acta 2021, 522, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Linnet, K. Performance of Deming regression analysis in case of misspecified analytical error ratio in method comparison studies. Clin. Chem. 1998, 44, 1024–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
c (μg/mL) | PCR Vials | NanoVials | ||||||
---|---|---|---|---|---|---|---|---|
WS | DBGE | WS | DBGE | |||||
t (min) | p (psi/kPa) | t (min) | p (psi/kPa) | t (min) | p (psi/kPa) | t (min) | p (psi/kPa) | |
6.25 | 10 | 2.5 (17.24) | 15 | 25 (172.37) | 5 | 0.5 (3.45) | 10 | 3.8 (26.20) |
12.5 | 10 | 5.0 (34.47) | 14 | 25 (172.37) | 10 | 0.5 (3.45) | 10 | 3.5 (24.13) |
25.0 | 10 | 10 (68.95) | 10 | 30 (206.84) | 10 | 1.0 (6.90) | 10 | 3.0 (20.68) |
37.5 | 10 | 15 (103.42) | 10 | 25 (172.37) | 10 | 1.5 (10.34) | 10 | 2.5 (17.24) |
50.0 | 10 | 20 (137.90) | 10 | 20 (137.90) | 10 | 2.0 (13.79) | 10 | 2.0 (13.79) |
75.0 | 10 | 30 (206.84) | 10 | 10 (68.95) | 10 | 3.0 (20.68) | 10 | 1.0 (6.90) |
CE Device | Mode | Prilocaine | Bupivacaine | ||||
---|---|---|---|---|---|---|---|
a | b | r2 | a | b | r2 | ||
PCR Vials | |||||||
PA800 Plus | R | 0.0234 | −0.0294 | 0.9988 | 0.0122 | −0.0160 | 0.9987 |
F | 0.0230 | −0.0198 | 0.9980 | 0.0119 | −0.0133 | 0.9976 | |
M | 0.0232 | −0.0162 | 0.9990 | 0.0121 | −0.0109 | 0.9987 | |
P/ACE MDQ | R | 0.0229 | −0.0163 | 0.9991 | 0.0119 | −0.0094 | 0.9989 |
F | 0.0229 | −0.0088 | 0.9989 | 0.0119 | −0.0077 | 0.9989 | |
M | 0.0232 | −0.0180 | 0.9994 | 0.0120 | −0.0101 | 0.9993 | |
Nano Vials | |||||||
PA800 Plus | nV | 0.0321 | −0.0070 | 1.0000 | 0.0186 | −0.0072 | 0.9999 |
R | 0.0312 | −0.0193 | 0.9996 | 0.0181 | −0.0118 | 0.9998 | |
M | 0.0314 | −0.0068 | 0.9999 | 0.0182 | −0.0059 | 0.9998 |
Ce Device | Mode | Prilocaine | Bupivacaine | ||||||
---|---|---|---|---|---|---|---|---|---|
a | Sa (10−16) | b | Sb (10−14) | a | Sa (10−16) | b | Sb (10−14) | ||
PCR Vials | |||||||||
PA800 Plus | F vs. M | 1.01 | 4.26 | 0.16 | 2.31 | 1.01 | 0.20 | 0.20 | 0.11 |
R vs. M | 0.99 | 0.19 | 0.56 | 0.10 | 0.99 | 6.46 | 0.42 | 3.51 | |
P/ACE MDQ | F vs. M | 1.01 | 6.45 | −0.40 | 3.50 | 1.01 | 6.64 | −0.20 | 3.60 |
R vs. M | 1.01 | 5.16 | −0.08 | 2.79 | 1.01 | 7.81 | −0.06 | 4.24 | |
Nano Vials | |||||||||
PA800 Plus | nV vs. M | 0.98 | 8.67 | 0.01 | 4.70 | 0.98 | 7.88 | 0.07 | 4.26 |
nV vs. R | 0.97 | 0.15 | –0.38 | 8.08 | 0.97 | 0.12 | –0.25 | 6.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołąb, M.; Woźniakiewicz, M.; Nowak, P.M.; Kościelniak, P. An Automated Hydrodynamically Mediated Technique for Preparation of Calibration Solutions via Capillary Electrophoresis System as a Promising Alternative to Manual Pipetting. Molecules 2021, 26, 6268. https://doi.org/10.3390/molecules26206268
Gołąb M, Woźniakiewicz M, Nowak PM, Kościelniak P. An Automated Hydrodynamically Mediated Technique for Preparation of Calibration Solutions via Capillary Electrophoresis System as a Promising Alternative to Manual Pipetting. Molecules. 2021; 26(20):6268. https://doi.org/10.3390/molecules26206268
Chicago/Turabian StyleGołąb, Małgorzata, Michał Woźniakiewicz, Paweł M. Nowak, and Paweł Kościelniak. 2021. "An Automated Hydrodynamically Mediated Technique for Preparation of Calibration Solutions via Capillary Electrophoresis System as a Promising Alternative to Manual Pipetting" Molecules 26, no. 20: 6268. https://doi.org/10.3390/molecules26206268
APA StyleGołąb, M., Woźniakiewicz, M., Nowak, P. M., & Kościelniak, P. (2021). An Automated Hydrodynamically Mediated Technique for Preparation of Calibration Solutions via Capillary Electrophoresis System as a Promising Alternative to Manual Pipetting. Molecules, 26(20), 6268. https://doi.org/10.3390/molecules26206268