Enzyme Activity of Natural Products on Cytochrome P450
Abstract
:1. Introduction
2. Results and Discussion
2.1. Search Results, Study Inclusion
2.2. Study Characteristics
2.3. Methods for Detecting CYP450 Enzyme Activity
2.3.1. In Vitro
2.3.2. In Vivo
2.3.3. Probe Drug Assay
2.4. Natural Products’ Modulation on CYP450 Isoforms
2.4.1. Milk Thistle
2.4.2. Black Cohosh
2.4.3. Renshen
2.4.4. Danshen
Natural Products | CYP450 Species | CYP450 | Effects on CYP450 | Method | Ref. |
---|---|---|---|---|---|
Milk thistle extracts and eight isolated constituents | Human | CYP3A | Inhibit (The extract silymarin and constituents … demonstrated >50% inhibition of CYP3A activity …) | In vitro (human liver and intestinal microsomes) | [29] |
Milk thistle extract | Human | CYP1A2 CYP2C9 CYP2D6 CYP3A4/5 | ——(Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities.) | Clinical trial | [73] |
Milk thistle extract | Human | CYP1A2 CYP2A6 CYP2B6 CYP2C8 CYP2C9 CYP2C19 CYP2D6 CYP2E1 CYP3A4 | Inhibit (… the extract significantly inhibited CYP 2B6, 2C8, 2C9, 2C19, 2E1, and 3A4…) ——(but not likely, and are remote for CYPs 2C19, 2D6, and 3A4.) | In vitro (human hepatocytes and human liver microsomes), HPLC-MS | [92] |
Milk thistle | Human | CYP2C9 | Inhibit (The results indicated milk thistle as the most potent CYP2C9 inhibitor.) | In vitro (human liver microsomes), HPLC | [93] |
Milk thistle | Human | CYP2C8 | Inhibit (Isosilibinin, a mixture of the diastereoisomers isosilybin A and isosilybin B, was found to be the most potent inhibitor, followed by isosilybin B...) | In vitro (human liver microsomes), LC/MS-MS. | [94] |
7-O-methylated analogues of flavonolignans from Milk thistle | Human | CYP2C9 CYP3A4/5 | Inhibit (CYP2C9 activity was most sensitive to inhibition, … followed by CYP3A4/5 and …) | In vitro (human liver or intestinal microsomes), HPLC | [95] |
Milk thistle aqueous/ methanolic extracts | Human | CYP2C9 CYP2B6 CYP2C19 CYP3A4 | Inhibit (The present work indicates that inhibition of CYP2C9 occurs with the aqueous extracts, IC50 = 64.2 µg/mL…The methanolic extract caused significant inhibition of CYP2B6, CYP2C9, CYP2C19, and CYP3A4.) | In vitro (N-in-one cocktail), LC/MS-MS | [96] |
Black cohosh | Human | CYP2D6 CYP3A4 | —— (Previous in vivo studies in humans have concluded that CYP2D6 and CYP3A4 are not inhibited by black cohosh. The present data are in agreement with these findings.) | In vitro (N-in-one cocktail), LC/MS-MS | [96] |
Commercial liquid (ethanol) extracts of black cohosh | Human | CYP2C19 | Inhibit (one of the three most potent interactions were: Black cohosh and CYP2C19 (IC50 0.37 μg/mL). | In vitro (microplate-based assays using cDNA-expressed CYP450 isoforms and fluorogenic substrates) | [97] |
75% ethanolic extract of black cohosh | Human | CYP2D6 CYP3A4 | Inhibit (In vitro metabolic interactions between black cohosh and tamoxifen via inhibition of cytochromes P450 2D6 and 3A4.) | In vitro (human liver microsomes), LC-MS | [98] |
Methanol extracts of garlic, echinacea, saw palmetto, valerian, black cohosh and cranberry | Human | CYP2C8 | Inhibit (All herbal extracts showed inhibition of CYP2C8 activity...) | In vitro (human liver microsomes), LC/MS/MS | [99] |
Red ginseng | Human | CYP2C9 CYP3A4 CYP1A2 CYP2C19 CYP2D6 | ——(Red ginseng poses minimal risks for clinically relevant CYP- or OATP-mediated drug interactions and is well tolerated.) | Clinical trials, Cocktail | [78] |
Sailuotong (SLT), a fixed combination of Panax ginseng, Ginkgo biloba, and Crocus sativus extracts | Rat | CYP1A2 CYP3A1/2 | Induce-CYP1A2 (repeated administration of SLT induced CYP1A2 by enhancing... The influence is attributed to its herbal component of ginseng to a large extent.) Inhibit- CYP3A (The inhibition of SLT on CYP3A was likely attributed to ginseng and gingko cooperatively.) | In vivo (cocktail), LC-MS/MS | [40] |
Red ginseng | Human | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | ——(No significantly different drug interactions were observed between fermented red ginseng and the CYP probe substrates) | Clinical trial | [79] |
Red ginseng | Human | CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 | ——(RG has no relevant potential to cause CYP enzyme- or P-gp-related interactions.) | Clinical trial | [80] |
Panax ginseng | Human | CYP3A | Induce (Ginseng appeared to induce CYP3A activity in the liver and possibly the gastrointestinal tract.) | Clinical trial | [81] |
Korean red ginseng (KRG) | Human & Mice | CYP3A CYP2D | Induce-CYP3A Inhibit-CYP2D (The area under the curve for OH-midazolam/midazolam catalysed by CYP3A was increased significantly by the administration of 2.0 g/kg KRG extract for 2 and 4 weeks. CYP3A-catalysed midazolam 1′-hydroxylation also increased significantly in a dose- and time-dependent manner…Whereas CYP2D-catalysed dextromethorphan O-deethylation decreased in a dose- and time-dependent manner in vivo.) | In vitro (human liver microsomes), in vivo, LC-MS/MS | [82] |
Tanshinones of Danshen | Human | CYP1A2 CYP2C9 CYP2E1 CYP3A4 CYP1A2 | Inhibit (Tanshinone I, tanshinone IIA, and cryptotanshinone were potent competitive CYP1A2 inhibitors; medium competitive inhibitors of CYP2C9; medium competitive inhibitors of CYP2E1 for tanshinone I and 10.8 μM for crytotanshinone; but weak competitive inhibitors of CYP3A4. Dihydrotanshinone was a competitive inhibitor of human CYP1A2 and CYP2C9, a noncompetitive inhibitor of CYP3A4 but an uncompetitive CYP2E1 inhibitor.) | In vitro (human Liver Microsomes), HPLC | [87] |
Danshen capsules | Human | CYP3A4 | Induce (The results suggested that multiple dose administration of Danshen capsules could induce cytochrome P450 (CYP) isoenzymes, thereby increasing the clearance of clopidogrel.) | Clinical trial | [16] |
Danshen extract | Rat | CYP3A | —— (Orally administered Danshen had no substantial effect on the pharmacokinetics of docetaxel and clopidogrel, suggesting the negligible safety concern of Danshen in P-gp- and CYP3A-mediated interactions in vivo.) | In vivo (cocktail), LC-MS/MS | [85] |
Miltirone (from Danshen) | Human | CYP1A2 CYP2C9 CYP2D6 CYP3A4 | Inhibit (Miltirone showed moderate inhibition on CYP1A2 (IC50 = 1.73 μM) and CYP2C9 (IC50 = 8.61 μM), and weak inhibition on CYP2D6 (IC50 = 30.20 μM) and CYP3A4 (IC50 = 33.88 μM).) | In vitro (human liver microsomes), HPLC | [88] |
Danshen components | Human | CYP2C8 CYP2J2 | Inhibit (salvianolic acid A was a competitive inhibitor of CYP2C8 and mixed-type inhibitor of CYP2J2. alvianolic acid C had moderate noncompetitive and mixed-type inhibitions on CYP2C8 and CYP2J2, respectively. Tanshinone IIA was a moderate competitive inhibitor of CYP2C8. Dihydrotanshinone I had moderate noncompetitive inhibition on CYP2J2, but mechanism-based inhibition on CYP2C8. Tanshinone I was a moderate competitive inhibitor of CYP2C8. | In vitro (recombinant human CYP2C8 and CYP2J2 systems), LC-MS/MS | [100] |
Danshen | Human | CYP1A2 | Inhibit (CYP1A2 activity was decreased with an increasing inhibitor concentration, confirming the inhibition of caffeine metabolism in vivo.) | In vitro (human liver microsomes), clinical trials, HPLC. | [101] |
Guanxinning injection (Danshen, Chuanxiong) | Rat | CYP1A2 | Inhibit (The in vivo and in vitro results demonstrated that GXNI could induce CYP1A2 activity in rats.) | In vivo, in vitro, UPLC-MS/MS. | [89] |
Tanshinone I, tanshinone IIA, and cryptotanshinone, baicalein, osthole, quercetin, cordycepin, and sodium tanshinone IIA sulfonate (From Danshen) | Human | CYP1A2 | Inhibit (tanshinone I, tanshinone IIA, and cryptotanshinone exhibited remarkable inhibition on CYP1A2,... baicalein, osthole, quercetin, cordycepin, and sodium tanshinone IIA sulfonate showed moderate inhibition on the CYP1A2…) | In vitro (high throughput inhibitor screening kit) | [102] |
3. Materials and Methods
3.1. Data Retrieval
3.2. Screening and Eligibility
3.3. Annotated Bibliography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hitchings, R.; Kelly, L. Drug metabolism as a community effort. Cell Metab. 2019, 30, 235–237. [Google Scholar] [CrossRef]
- Rendic, S.; Guengerich, F.P. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol. 2015, 28, 38–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendic, S.P.; Guengerich, F.P. Human cytochrome P450 enzymes 5–51 as targets of drugs and natural and environmental compounds: Mechanisms, induction, and inhibition–toxic effects and benefits. Drug Metab. Rev. 2018, 50, 256–342. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; He, D.D.; Su, Z.Y.; Du, Y.; Wang, Y.J.; Gao, S.K.; Guo, M.Z.; Tang, D.Q. P450 enzymes-based metabolic interactions between monarch drugs and the other constituent herbs: A strategy to explore compatibility mechanism of Sangju-Yin. Phytomedicine 2019, 58, 152866. [Google Scholar] [CrossRef]
- Ma, W.J.; Wang, W.; Huang, X.H.; Yao, G.Z.; Jia, Q.; Shen, J.Y.; Ouyang, H.Z.; Chang, Y.X.; He, J. HPLC-MS/MS analysis of Aconiti Lateralis Radix praeparata and its combination with Red Ginseng effect on rat CYP450 activities using the cocktail approach. Evid. Based Complement. Alternat. Med. 2020, 2020, 8603934. [Google Scholar] [CrossRef] [PubMed]
- Pelkonen, O.; Turpeinen, M.; Hakkola, J.; Honkakoski, P.; Hukkanen, J.; Raunio, H. Inhibition and induction of human cytochrome P450 enzymes: Current status. Arch. Toxicol. 2008, 82, 667–715. [Google Scholar] [CrossRef]
- Hakkola, J.; Hukkanen, J.; Turpeinen, M.; Pelkonen, O. Inhibition and induction of CYP enzymes in humans: An update. Arch. Toxicol. 2020, 94, 3671–3722. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Ponnusankar, S.; Pandit, S.; Hazam, P.K.; Ahmmed, M.; Mukherjee, K. Botanicals as medicinal food and their effects on drug metabolizing enzymes. Food Chem. Toxicol. 2011, 49, 3142–3153. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.Y.; Li, F.C.; Zhou, Y.; Mou, M.J.; Lu, Y.J.; Chen, K.L.; Xue, J.; Luo, Y.C.; Fu, J.B.; He, X.; et al. INTEDE: Interactome of drug-metabolizing enzymes. Nucleic Acids Res. 2021, 49, D1233–D1243. [Google Scholar] [CrossRef]
- Feng, D.D.; Tang, T.; Fan, R.; Luo, J.K.; Cui, H.J.; Wang, Y.; Gan, P.P. Gancao (Glycyrrhizae Radix) provides the main contribution to Shaoyao-Gancao decoction on enhancements of CYP3A4 and MDR1 expression via pregnane X receptor pathway in vitro. BMC Complement. Altern. Med. 2018, 18, 345. [Google Scholar] [CrossRef]
- Meng, L.; Li, Y.; Xue, C.J.; Ding, C.Y.; Wang, X.N.; Fu, R.; Li, Y.J.; Li, X.; Dong, Z.J. Compound danshen dripping pills affect the pharmacokinetics of azisartan by regulating the expression of cytochrome P450 2B1, 2C6, and 2C11 in rats. J. Pharm. Biomed. Anal. 2021, 195, 113887. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Jiang, X.M.; Li, C.; Xue, H.T.; Zhang, X.Y. Development of an IgY antibody-based immunoassay for the screening of the CYP2E1 inhibitor/enhancer from herbal medicines. Front. Pharmacol. 2016, 7, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, T.Y.; Wang, H.J.; Wang, Y.C.; Tan, E.C.H.; Lee, I.J.; Yun, C.H.; Ueng, Y.F. Effects of Shengmai San on key enzymes involved in hepatic and intestinal drug metabolism in rats. J. Ethnopharmacol. 2021, 271, 113914. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, W.; Huang, J.; Chen, Q.L.; Wang, D.D.; Zou, L.W.; Zhao, Y.F.; Zhang, W.D.; Xu, J.G.; Chen, H.Z. Inhibition of drug-metabolizing enzymes by Jingyin granules: Implications of herb–drug interactions in antiviral therapy. Acta Pharmacol. Sin. 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Huang, J.; Liu, W.; Wang, C.R.; Liu, Y.F.; Tu, D.Z.; Liang, X.M.; Yang, L.; Zhang, W.D.; Chen, H.Z.; et al. Inhibition of drug-metabolizing enzymes by Qingfei Paidu decoction: Implication of herb–drug interactions in COVID-19 pharmacotherapy. Food Chem. Toxicol. 2021, 149, 111998. [Google Scholar] [CrossRef]
- Zhou, C.H.; Xu, M.; Yu, H.B.; Zheng, X.T.; Zhong, Z.F.; Zhang, L.T. Effects of Danshen capsules on the pharmacokinetics and pharmacodynamics of clopidogrel in healthy volunteers. Food Chem. Toxicol. 2018, 119, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Cyranoski, D. Why Chinese medicine is heading for clinics around the world. Nature 2018, 561, 448–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Liperoti, R.; Vetrano, D.L.; Bernabei, R.; Onder, G. Herbal medications in cardiovascular medicine. J. Am. Coll. Cardiol. 2017, 69, 1188–1199. [Google Scholar] [CrossRef]
- Bhutani, P.; Joshi, G.; Raja, N.; Bachhav, N.; Rajanna, P.K.; Bhutani, H.; Paul, A.T.; Kumar, R. US FDA approved drugs from 2015–June 2020: A perspective. J. Med. Chem. 2021, 64, 2339–2381. [Google Scholar] [CrossRef]
- Wu, J.J.; Guan, X.Q.; Dai, Z.R.; He, R.J.; Ding, X.X.; Yang, L.; Ge, G.B. Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coord. Chem. Rev. 2021, 427, 213600. [Google Scholar] [CrossRef]
- Sudsakorn, S.; Bahadduri, P.; Fretland, J.; Lu, C. 2020 FDA Drug-drug interaction guidance: A comparison analysis and action plan by pharmaceutical industrial scientists. Curr. Drug Metab. 2020, 21, 403–426. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food Drug Administration. In Vitro Drug Interaction Studies-Cytochrome P450 Enzyme-and Transporter-Mediated Drug Interactions Guidance for Industry. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 18 November 2021).
- U.S. Food Drug Administration. Clinical Drug Interaction Studies-Cytochrome P450 Enzyme-and Transporter-Mediated Drug Interactions Guidance for Industry. 2020. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions (accessed on 18 November 2021).
- Park, S.Y.; Nguyen, P.H.; Kim, G.; Jang, S.N.; Lee, G.H.; Phuc, N.M.; Wu, Z.; Liu, K.H. Strong and selective inhibitory effects of the biflavonoid selamariscina A against CYP2C8 and CYP2C9 enzyme activities in human liver microsomes. Pharmaceutics 2020, 12, 343. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, H.S.; Jeon, J.S.; Choi, Y.J.; Choi, Y.J.; Yoo, S.Y.; Kim, E.Y.; Lee, K.; Park, I.; Na, M.; et al. Quasi-irreversible inhibition of CYP2D6 by berberine. Pharmaceutics 2020, 12, 916. [Google Scholar] [CrossRef] [PubMed]
- Thomford, N.E.; Dzobo, K.; Adu, F.; Chirikure, S.; Wonkam, A.; Dandara, C. Bush mint (Hyptis suaveolens) and spreading hogweed (Boerhavia diffusa) medicinal plant extracts differentially affect activities of CYP1A2, CYP2D6 and CYP3A4 enzymes. J. Ethnopharmacol. 2018, 211, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Kim, K.S.; Kim, D.D.; Yoon, I.S. Metabolic interactions of rosmarinic acid with human cytochrome P450 monooxygenases and uridine diphosphate glucuronosyltransferases. Biomed. Pharmacother. 2019, 110, 111–117. [Google Scholar] [CrossRef]
- Brantley, S.J.; Graf, T.N.; Oberlies, N.H.; Paine, M.F. A systematic approach to evaluate herb–drug interaction mechanisms: Investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors. Drug Metab. Dispos. 2013, 41, 1662–1670. [Google Scholar] [CrossRef] [Green Version]
- Ribonnet, L.; Callebaut, A.; Nobels, I.; Scippo, M.L.; Schneider, Y.J.; De Saeger, S.; Pussemier, L.; Larondelle, Y. Modulation of CYP1A1 activity by a Ginkgo biloba extract in the human intestinal Caco-2 cells. Toxicol. Lett. 2011, 202, 193–202. [Google Scholar] [CrossRef]
- Yu, C.P.; Huang, C.Y.; Lin, S.P.; Hou, Y.C. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats. J. Food Drug Anal. 2018, 26, S125–S132. [Google Scholar] [CrossRef]
- Husain, I.; Manda, V.; Alhusban, M.; Dale, O.R.; Bae, J.Y.; Avula, B.; Gurley, B.J.; Chittiboyina, A.G.; Khan, I.A.; Khan, S.I. Modulation of CYP3A4 and CYP2C9 activity by Bulbine natalensis and its constituents: An assessment of HDI risk of B. natalensis containing supplements. Phytomedicine 2021, 81, 153416. [Google Scholar] [CrossRef]
- Husain, I.; Dale, O.R.; Manda, V.; Ali, Z.; Gurley, B.J.; Chittiboyina, A.G.; Khan, I.A.; Khan, S.I. Bulbine natalensis (currently Bulbine latifolia) and select bulbine knipholones modulate the activity of AhR, CYP1A2, CYP2B6, and P-gp. Planta Med. 2021. [Google Scholar] [CrossRef]
- Dusek, J.; Carazo, A.; Trejtnar, F.; Hyrsova, L.; Holas, O.; Smutny, T.; Micuda, S.; Pavek, P. Steviol, an aglycone of steviol glycoside sweeteners, interacts with the pregnane X (PXR) and aryl hydrocarbon (AHR) receptors in detoxification regulation. Food Chem. Toxicol. 2017, 109, 130–142. [Google Scholar] [CrossRef]
- Weiss, J. Herb–drug interaction potential of anti-borreliae effective extracts from Uncaria tomentosa (Samento) and Otoba parvifolia (Banderol) assessed in vitro. Molecules 2019, 24, 137. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef]
- Li, A.P. In vitro human cell–based experimental models for the evaluation of enteric metabolism and drug interaction potential of drugs and natural products. Drug Metab. Dispos. 2020, 48, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.H.; He, X.; Chen, J.X.; He, L.N.; Jin, C.H.; Wang, L.L.; Zhang, F.L.; An, L.J. Identification and characterization of reactive metabolites in myristicin-mediated mechanism-based inhibition of CYP1A2. Chem. Biol. Interact. 2015, 237, 133–140. [Google Scholar] [CrossRef]
- Fontana, E.; Dansette, P.M.; Poli, S.M. Cytochrome p450 enzymes mechanism based inhibitors: Common sub-structures and reactivity. Curr. Drug Metab. 2005, 6, 413–454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Miao, L.; Lin, L.; Ren, C.Y.; Liu, J.X.; Cui, Y.M. Repeated administration of Sailuotong, a fixed combination of Panax ginseng, Ginkgo biloba, and Crocus sativus extracts for vascular dementia, alters CYP450 activities in rats. Phytomedicine 2018, 38, 125–134. [Google Scholar] [CrossRef]
- Lou, D.; Bao, S.S.; Li, Y.H.; Lin, Q.M.; Yang, S.F.; He, J.Y. Inhibitory mechanisms of myricetin on human and rat liver cytochrome P450 enzymes. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.J.; Petrie, I.D.; Levy, R.H.; Ragueneau-Majlessi, I. Mechanisms and clinical significance of pharmacokinetic-based drug–drug interactions with drugs approved by the US Food and Drug Administration in 2017. Drug Metab. Dispos. 2019, 47, 135–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.J.; Wang, Y.; Ragueneau-Majlessi, I. Pharmacokinetic drug–drug interactions with drugs approved by the US Food and Drug Administration in 2020: Mechanistic understanding and clinical recommendations. Drug Metab. Dispos. 2022, 50, 1–7. [Google Scholar] [CrossRef]
- Foti, R.S.; Rock, D.A.; Wienkers, L.C.; Wahlstrom, J.L. Selection of alternative CYP3A4 probe substrates for clinical drug interaction studies using in vitro data and in vivo simulation. Drug Metab. Dispos. 2010, 38, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.H.; Zhu, Y.D.; Feng, Z.; Song, Y.Q.; Jia, S.N.; Zhu, L.; Fang, S.Q.; Ge, G.B. Interactions of drug-metabolizing enzymes with the Chinese herb Psoraleae Fructus. Chin. J. Nat. Med. 2019, 17, 858–870. [Google Scholar] [CrossRef]
- Taki, Y.; Yokotani, K.; Yamada, S.; Shinozuka, K.; Kubota, Y.; Watanabe, Y.; Umegaki, K. Ginkgo biloba extract attenuates warfarin-mediated anticoagulation through induction of hepatic cytochrome P450 enzymes by bilobalide in mice. Phytomedicine 2012, 19, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Choi, E.; Lee, Y.M.; Jeong, G.S.; Lee, S. In vitro inhibition of human cytochrome P450 by cudratricusxanthone A. Food Chem. Toxicol. 2015, 81, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.Y.; Choi, J.; Leonard, S.W.; Banuvar, S.; Barengolts, E.; Viana, M.; Chen, S.N.; Pauli, G.F.; Bolton, J.L.; van Breemen, R.B. No Clinically Relevant Pharmacokinetic Interactions of a Red Clover Dietary Supplement with Cytochrome P450 Enzymes in Women. J. Agric. Food Chem. 2020, 68, 13929–13939. [Google Scholar] [CrossRef]
- Sun, J.; Lu, Y.; Li, Y.T.; Pan, J.; Liu, C.H.; Gong, Z.P.; Huang, J.; Zheng, J.; Zheng, L.; Li, Y.J.; et al. Influence of Shenxiong glucose injection on the activities of six CYP isozymes and metabolism of warfarin in rats assessed using probe cocktail and pharmacokinetic approaches. Molecules 2017, 22, 1994. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Huang, W.H.; Peng, J.B.; Tan, Z.R.; Ou-Yang, D.S.; Hu, D.L.; Zhang, W.; Chen, Y. Quercetin significantly inhibits the metabolism of caffeine, a substrate of cytochrome P450 1A2 unrelated to CYP1A2*1C (−2964G > A) and *1F (734C > A) gene polymorphisms. Biomed. Res. Int. 2014, 2014, 405071. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Kim, I.S.; Rehman, S.U.; Na, C.S.; Yoo, H.H. HPLC determination of bioactive flavonoids in Hovenia dulcis fruit extracts. J. Chromatogr. Sci. 2016, 54, 130–135. [Google Scholar]
- Dostálek, M.; Pistovcakova, J.; Jurica, J.; Tomandl, J.; Linhart, I.; Sulcova, A.; Hadasova, E. Effect of St John’s wort (Hypericum perforatum) on cytochrome P-450 activity in perfused rat liver. Life Sci. 2005, 78, 239–244. [Google Scholar] [CrossRef]
- Showande, S.J.; Fakeye, T.O.; Kajula, M.; Hokkanen, J.; Tolonen, A. Potential inhibition of major human cytochrome P450 isoenzymes by selected tropical medicinal herbs—Implication for herb–drug interactions. Food Sci. Nutr. 2019, 7, 44–55. [Google Scholar] [CrossRef]
- Li, G.; Simmler, C.; Chen, L.; Nikolic, D.; Chen, S.N.; Pauli, G.F.; van Breemen, R.B. Cytochrome P450 inhibition by three licorice species and fourteen licorice constituents. Eur. J. Pharm. Sci. 2017, 109, 182–190. [Google Scholar] [CrossRef]
- He, N.; Xie, H.G.; Collins, X.; Edeki, T.; Yan, Z.Y. Effects of individual ginsenosides, ginkgolides and flavonoids on CYP2C19 and CYP2D6 activity in human liver microsomes. Clin. Exp. Pharmacol. Physiol. 2006, 33, 813–815. [Google Scholar] [CrossRef] [PubMed]
- Sahu, R.; Ahmed, T.; Sangana, R.; Punde, R.; Subudhi, B.B. Effect of Tinospora cordifolia aqua-alcoholic extract on pharmacokinetic of Glibenclamide in rat: An herb–drug interaction study. J. Pharm. Biomed. Anal. 2018, 151, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.L.; Yang, S.; Hu, J.P.; Li, Y. Multifaceted interaction of the traditional Chinese medicinal herb Schisandra chinensis with cytochrome P450-mediated drug metabolism in rats. J. Ethnopharmacol. 2014, 155, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Ding, T.G.; Qin, X.; Liu, M.Y.; Wang, X. In vitro and in vivo evaluation of cucurbitacin E on rat hepatic CYP2C11 expression and activity using LC-MS/MS. Sci. China Life Sci. 2017, 60, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Jenoobi, F.I.; Al-Thukair, A.A.; Alam, M.A.; Abbas, F.A.; Al-Mohizea, A.M.; Alkharfy, K.M.; Al-Suwayeh, S.A. Effect of garden cress seeds powder and its alcoholic extract on the metabolic activity of CYP2D6 and CYP3A4. Evid. Based Complement. Alternat. Med. 2014, 2014, 634592. [Google Scholar] [CrossRef]
- Singh, S.K.; Valicherla, G.R.; Bikkasani, A.K.; Cheruvu, S.H.; Hossain, Z.; Taneja, I.; Ahmad, H.; Raju, K.S.R.; Sangwan, N.S.; Singh, S.K. Elucidation of plasma protein binding, blood partitioning, permeability, CYP phenotyping and CYP inhibition studies of Withanone using validated UPLC method: An active constituent of neuroprotective herb Ashwagandha. J. Ethnopharmacol. 2021, 270, 113819. [Google Scholar] [CrossRef]
- Geng, T.; Si, H.H.; Kang, D.Y.; Li, Y.J.; Huang, W.Z.; Ding, G.; Wang, Z.Z.; Zhang, H.; Xiao, W. Influences of Re Du Ning Injection, a traditional Chinese medicine injection, on the CYP450 activities in rats using a cocktail method. J. Ethnopharmacol. 2015, 174, 426–436. [Google Scholar] [CrossRef]
- Xu, R.A.; Xu, Z.S.; Ge, R.S. Effects of hydroxysafflor yellow A on the activity and mRNA expression of four CYP isozymes in rats. J. Ethnopharmacol. 2014, 151, 1141–1146. [Google Scholar] [CrossRef]
- Dogra, A.; Bhatt, S.; Magotra, A.; Sharma, A.; Kotwal, P.; Gour, A.; Wazir, P.; Singh, G.; Nandi, U. Intervention of curcumin on oral pharmacokinetics of daclatasvir in rat: A possible risk for long-term use. Phytother. Res. 2018, 32, 1967–1974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albassam, A.A.; Ahad, A.; Alsultan, A.; Al-Jenoobi, F.I. Inhibition of cytochrome P450 enzymes by thymoquinone in human liver microsomes. Saudi. Pharm. J. 2018, 26, 673–677. [Google Scholar] [CrossRef]
- Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Pook, P.C.; Er, H.M.; Ong, C.E. In vitro determination of the effect of Andrographis paniculata extracts and andrographolide on human hepatic cytochrome P450 activities. J. Nat. Med. 2011, 65, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Wanwimolruk, S.; Prachayasittikul, V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1). EXCLI J. 2014, 13, 347–391. [Google Scholar]
- Wanwimolruk, S.; Phopin, K.; Prachayasittikul, V. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2). EXCLI J. 2014, 13, 869–896. [Google Scholar] [PubMed]
- Xu, W.Q.; Zhu, H.K.; Hu, B.; Cheng, Y.L.; Guo, Y.H.; Yao, W.R.; Qian, H. Echinacea in hepatopathy: A review of its phytochemistry, pharmacology, and safety. Phytomedicine 2021, 87, 153572. [Google Scholar] [CrossRef]
- Soleymani, S.; Bahramsoltani, R.; Rahimi, R.; Abdollahi, M. Clinical risks of St John’s Wort (Hypericum perforatum) co-administration. Expert Opin. Drug Metab. Toxicol. 2017, 13, 1047–1062. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Song, I.S. Interactions of Ginseng with therapeutic drugs. Arch. Pharm. Res. 2019, 42, 862–878. [Google Scholar] [CrossRef]
- Giese, L.A. Complementary healthcare practices: Milk thistle and the treatment of hepatitis. Gastroenterol. Nurs. 2001, 24, 95–97. [Google Scholar] [CrossRef]
- Candace, N.; Leyanna, Z.C. Natural health products and diabetes: A practical review. Can. J. Diabetes 2017, 41, 642–647. [Google Scholar]
- Kawaguchi-Suzuki, M.; Frye, R.F.; Zhu, H.J.; Brinda, B.J.; Chavin, K.D.; Bernstein, H.J.; Markowitz, J.S. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab. Dispos. 2014, 42, 1611–1616. [Google Scholar] [CrossRef] [Green Version]
- Gurley, B.; Hubbard, M.A.; Williams, D.K.; Thaden, J.; Tong, Y.; Gentry, W.B.; Breen, P.; Carrier, D.J.; Cheboyina, S. Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: Comparison of a milk thistle and black cohosh product to rifampin and clarithromycin. J. Clin. Pharmacol. 2006, 46, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Van Erp, N.P.; Baker, S.D.; Zhao, M.; Rudek, M.A.; Guchelaar, H.J.; Nortier, J.W.; Sparreboom, A.; Gelderblom, H. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan. Clin. Cancer. Res. 2005, 11, 7800–7806. [Google Scholar] [CrossRef] [Green Version]
- Gurley, B.; Gardner, S.; Hubbard, M.; Williams, K.; Gentry, B.; Carrier, J.; Edwards, D.; Khan, I. Assessment of botanical supplementation on human cytochrome P450 phenotype: Citrus aurantium, Echinacea, milk thistle, saw palmetto. Clin. Pharmacol. Ther. 2004, 75, P35. [Google Scholar] [CrossRef]
- Wanwimolruk, S.; Prachayasittikul, V. Variable inhibitory effect of herbal supplements of different brands on human P450 CYP1A2. EXCLI J. 2012, 11, 7–19. [Google Scholar] [PubMed]
- Seong, S.J.; Kang, W.Y.; Heo, J.K.; Jo, J.; Choi, W.G.; Liu, K.H.; Lee, S.; Choi, M.K.; Han, Y.H.; Lee, H.S.; et al. A comprehensive in vivo and in vitro assessment of the drug interaction potential of red ginseng. Clin. Ther. 2018, 40, 1322–1337. [Google Scholar] [CrossRef]
- Kim, M.G.; Kim, Y.; Jeon, J.Y.; Kim, D.S. Effect of fermented red ginseng on cytochrome P450 and P-glycoprotein activity in healthy subjects, as evaluated using the cocktail approach. Br. J. Clin. Pharmacol. 2016, 82, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Kim, Y.; Jeon, J.Y.; Kim, M.G. Effect of red ginseng on cytochrome P450 and P-glycoprotein activities in healthy volunteers. J. Ginseng. Res. 2016, 40, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Malati, C.Y.; Robertson, S.M.; Hunt, J.D.; Chairez, C.; Alfaro, R.M.; Kovacs, J.A.; Penzak, S.R. Influence of Panax ginseng on Cytochrome P450 (CYP) 3A and P-glycoprotein (P-gp) Activity in Healthy Participants. J. Clin. Pharmacol. 2012, 52, 932–939. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jo, J.J.; Cho, P.; Shrestha, R.; Kim, K.M.; Ki, S.H.; Song, K.S.; Liu, K.H.; Song, I.S.; Kim, J.H.; et al. Characterization of red ginseng–drug interaction by CYP3A activity increased in high dose administration in mice. Biopharm. Drug Dispos. 2020, 41, 295–306. [Google Scholar] [CrossRef]
- Chen, C.; Yang, F.Q.; Zhang, Q.; Wang, F.Q.; Hu, Y.J.; Xia, Z.N. Natural products for antithrombosis. Evid. Based Complement. Alternat. Med. 2015, 2015, 876426. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.O. Danshen: A versatile Chinese herbal drug for the treatment of coronary heart disease. Int. J. Cardiol. 2006, 113, 437–438. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shin, Y.J.; Kim, H.J.; Oh, J.H.; Jang, Y.P.; Lee, Y.J. Danshen extract does not alter pharmacokinetics of docetaxel and clopidogrel, reflecting its negligible potential in P-glycoprotein-and cytochrome P4503A-mediated herb–drug interactions. Int. J. Pharm. 2011, 410, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.R.; Zhang, R.; Sun, J.G.; Jiye, A.; Hao, H.P.; Peng, Y.; Ai, H.; Wang, G.J. Inhibitory effects of seven components of danshen extract on catalytic activity of cytochrome P450 enzyme in human liver microsomes. Drug Metab. Dispos. 2008, 36, 1308–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Cheung, C.M.; Lee, W.Y.W.; Or, P.M.Y.; Yeung, J.H.K. Major tanshinones of Danshen (Salvia miltiorrhiza) exhibit different modes of inhibition on human CYP1A2, CYP2C9, CYP2E1 and CYP3A4 activities in vitro. Phytomedicine 2010, 17, 868–875. [Google Scholar] [CrossRef]
- Zhou, X.L.; Wang, Y.; Hu, T.; Or, P.M.; Wong, J.; Kwan, Y.W.; Wan, D.C.; Hoi, P.M.; Lai, P.B.; Yeung, J.H. Enzyme kinetic and molecular docking studies for the inhibitions of miltirone on major human cytochrome P450 isozymes. Phytomedicine 2013, 20, 367–374. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Li, Q.; Sun, J.H.; Lin, H.O.; Liu, G.F. Effects of Guanxinning injection on rat cytochrome P450 isoforms activities in vivo and in vitro. Xenobiotica 2015, 45, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.L.; Linghu, K.G.; Wang, Y.L.; Liu, K.M.; Gao, Y.; Yu, H.; Yang, F.Q.; Hu, Y.J. Interactions of antithrombotic herbal medicines with Western cardiovascular drugs. Pharmacol. Res. 2020, 159, 104963. [Google Scholar] [CrossRef]
- Cheng, F.X.; Kovács, I.A.; Barabási, A.L. Network-based prediction of drug combinations. Nat. Commun. 2019, 10, 1197. [Google Scholar] [CrossRef]
- Doehmer, J.; Weiss, G.; McGregor, G.P.; Appel, K. Assessment of a dry extract from milk thistle (Silybum marianum) for interference with human liver cytochrome-P450 activities. Toxicol. In Vitro 2011, 25, 21–27. [Google Scholar] [CrossRef]
- Mooiman, K.D.; Goey, A.K.; Huijbregts, T.J.; Maas-Bakker, R.F.; Beijnen, J.H.; Schellens, J.H.; Meijerman, I. The in-vitro effect of complementary and alternative medicines on cytochrome P450 2C9 activity. J. Pharm. Pharmacol. 2014, 66, 1339–1346. [Google Scholar] [CrossRef]
- Albassam, A.A.; Frye, R.F.; Markowitz, J.S. The effect of milk thistle (Silybum marianum) and its main flavonolignans on CYP2C8 enzyme activity in human liver microsomes. Chem. Biol. Interact. 2017, 271, 24–29. [Google Scholar] [CrossRef]
- Althagafy, H.S.; Graf, T.N.; Sy-Cordero, A.A.; Gufford, B.T.; Paine, M.F.; Wagoner, J.; Polyak, S.J.; Croatt, M.P.; Oberlies, N.H. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-O-methylated analogues of flavonolignans from milk thistle. Bioorg. Med. Chem. 2013, 21, 3919–3926. [Google Scholar] [CrossRef] [Green Version]
- Sevior, D.K.; Hokkanen, J.; Tolonen, A.; Abass, K.; Tursas, L.; Pelkonen, O.; Ahokas, J.T. Rapid screening of commercially available herbal products for the inhibition of major human hepatic cytochrome P450 enzymes using the N-in-one cocktail. Xenobiotica 2010, 40, 245–254. [Google Scholar] [CrossRef]
- Ho, S.H.; Singh, M.; Holloway, A.C.; Crankshaw, D.J. The effects of commercial preparations of herbal supplements commonly used by women on the biotransformation of fluorogenic substrates by human cytochromes P450. Phytother. Res. 2011, 25, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Gödecke, T.; Chen, S.N.; Imai, A.; Lankin, D.C.; Farnsworth, N.R.; Pauli, G.F.; Van Breemen, R.B.; Nikolić, D. In vitro metabolic interactions between black cohosh (Cimicifuga racemosa) and tamoxifen via inhibition of cytochromes P450 2D6 and 3A4. Xenobiotica 2011, 41, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Albassam, A.A.; Mohamed, M.-E.F.; Frye, R.F. Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes. Xenobiotica 2015, 45, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.J.; Jiang, L.F.; Wu, T.; Chu, J.H.; Wei, Y.D.; Aa, J.Y.; Wang, G.J.; Hao, H.P.; Ju, W.Z.; Li, P. Inhibitory effects of Danshen components on CYP2C8 and CYP2J2. Chem. Biol. Interact. 2018, 289, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Sheriffdeen, M.M.; Alehaideb, Z.I.; Law, F.C. Caffeine/Angelica dahurica and caffeine/Salvia miltiorrhiza metabolic inhibition in humans: In vitro and in vivo studies. Complement. Ther. Med. 2019, 46, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.P.; Zhou, Z.W.; Chen, X.W.; Li, C.G.; Sneed, K.B.; Liang, J.; Zhou, S.F. Computational and in vitro studies on the inhibitory effects of herbal compounds on human cytochrome P450 1A2. Xenobiotica 2012, 42, 238–255. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Enzyme | Tissue Sites | Probe | Metabolite | Ref. |
---|---|---|---|---|
CYP1A1 | Liver, intestine | Phenacetin | Phenacetin O-deethylation (Acetaminophen) | [45] |
Ethoxyresorufin | Ethoxyresorufin O-de-ethylase | [46] | ||
CYP1A2 | Liver | Phenacetin | Phenacetin O-deethylation (Acetaminophen) | [47] |
Caffeine | Paraxanthine | [48,49,50] | ||
Methoxyresorufin | Methoxyresorufin O-demethylase | [46] | ||
CYP2A6 | Liver, lung | Coumarin | Coumarin 7-hydroxylation | [47] |
Methoxsalen | N/A | [51] | ||
CYP2B6 | Liver, lung | Bupropion | Bupropion hydroxylation | [47] |
CYP2C6 | Liver | Tolbutamide | N/A | [52] |
CYP2C8 | Liver | Paclitaxel | Paclitaxel 6-hydroxylation | [47] |
CYP2C9 | Liver, intestine | Diclofenac | Diclofenac 4′-hydroxylation | [47,53] |
Tolbutamide | Tolbutamide 4-hydroxylation | [54] | ||
CYP2C19 | Liver, intestine | (R)-Omeprazole | (R)-Omeprazole 5-hydroxylation | [47] |
S-Mephenytoin | S-Mephenytoin 4-hydroxylation | [55,56] | ||
CYP2C11 | Liver | S-Mephenytoin | S-Mephenytoin 4-hydroxylation | [57] |
Tolbutamide | Tolbutamide 4-hydroxylation | [49,58] | ||
CYP2D6 | Liver, intestine | Dextromethorphan | Dextromethorphan O-demethylation (dextrorphan) | [47,59] |
Bufuralol | Bufuralol 1-hydroxylation | [55] | ||
CYP2E1 | Liver, lung | Chlorzoxazone | Chlorzoxazone 6-hydroxylation | [47] |
4-Methylpyrazole | N/A | [60] | ||
CYP3A1 | Liver | Dapsone | N-acetyl dapsone | [61] |
Midazolam | Midazolam 1-hydroxylation | [62] | ||
CYP3A4 | Liver, intestine | Midazolam | Midazolam 1-hydroxylation | [47] |
Daclatasvir | N/A | [63] | ||
Testosterone | Testosterone 6β-hydroxylation | [21,64,65] |
No. | Eligibility Criteria |
---|---|
1 | Not in the life Sciences |
2 | Not in English |
3 | Not included article types. e.g., proceedings, feature, editorial material. |
4 | Journal without an impact factor |
5 | Irrelevant object/topic (The studies focusing on the regulation of gene expression or protein level were not included; the studies discussing the CYP450s that participate in the biosynthesis of bioactive natural products were not included as well. ONLY the studies that demonstrate the inhibition or induction on the activity of the CYP450 enzyme were included.) |
6 | Without experiments (for research article) |
7 | Full text not available |
8 | Other |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, H.-L.; Huang, H.-Y.; Lin, Y.-C.-D.; Cai, X.-X.; Kong, X.-J.; Luo, D.-L.; Zhou, Y.-H.; Huang, H.-D. Enzyme Activity of Natural Products on Cytochrome P450. Molecules 2022, 27, 515. https://doi.org/10.3390/molecules27020515
Zuo H-L, Huang H-Y, Lin Y-C-D, Cai X-X, Kong X-J, Luo D-L, Zhou Y-H, Huang H-D. Enzyme Activity of Natural Products on Cytochrome P450. Molecules. 2022; 27(2):515. https://doi.org/10.3390/molecules27020515
Chicago/Turabian StyleZuo, Hua-Li, Hsi-Yuan Huang, Yang-Chi-Dung Lin, Xiao-Xuan Cai, Xiang-Jun Kong, Dai-Lin Luo, Yu-Heng Zhou, and Hsien-Da Huang. 2022. "Enzyme Activity of Natural Products on Cytochrome P450" Molecules 27, no. 2: 515. https://doi.org/10.3390/molecules27020515
APA StyleZuo, H. -L., Huang, H. -Y., Lin, Y. -C. -D., Cai, X. -X., Kong, X. -J., Luo, D. -L., Zhou, Y. -H., & Huang, H. -D. (2022). Enzyme Activity of Natural Products on Cytochrome P450. Molecules, 27(2), 515. https://doi.org/10.3390/molecules27020515