Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells
Abstract
:1. Introduction
2. Results
2.1. Free Radical Scavenging Capacity of Herbal Fractions
2.2. Investigation of Quantification of the TPC and TFC
2.3. Evaluation of the Correlation Coefficient between the Antioxidant Activity of the Selected Herbal Extracts and Their Phenolic and Flavonoid Contents
2.4. Dose Effect Study on the Antioxidant Activity of UD, CBP, and IR
2.5. Evaluation of the Functional Groups Present in UD, CBP, and IR via the Fourier Transform Infrared Spectrophotometer (FT-IR) Analysis
2.6. Scrutiny of Phytochemicals by High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD)
2.7. Effect of the Different Herbal Fractions on the HepG2 Carcinoma Cell Proliferation
3. Discussions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Origin, Collection, and Authentication of the Plant Materials Used
4.3. Antioxidant Activity through the ABTS and DPPH Radical-Scavenging Assays
4.3.1. DPPH Radical Scavenging Activity of the Plant Extracts
4.3.2. ABTS Radical Scavenging Activity of the Plant Extracts
4.4. Estimation of the Total Phenolic Content (TPC)
4.5. Quantification of the Total Flavonoid Content (TFC)
4.6. Fourier Transform Infrared Spectroscopy (FT-IR)
4.7. HPLC-DAD Analysis
Sample Processing
4.8. Anti-Proliferative Efficacy Analysis Using the MTT Assay
4.9. EC50 Illustration of the Extracts of the Medicinal Plants Used
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012, 5, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusupov, M.; Privat-Maldonado, A.; Cordeiro, R.M.; Verswyvel, H.; Shaw, P.; Razzokov, J.; Bogaerts, A. Oxidative damage to hyaluronan–CD44 interactions as an underlying mechanism of action of oxidative stress-inducing cancer therapy. Redox Biol. 2021, 43, 101968. [Google Scholar] [CrossRef] [PubMed]
- Bano, T.; Kumar, N.; Dudhe, R. Free radical scavenging properties of pyrimidine derivatives. Org. Med. Chem. Lett. 2012, 2, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himalian, R.; Singh, S.K.; Singh, M.P. Ameliorative role of nutraceuticals on neurodegenerative diseases using the Drosophila melanogaster as a discovery model to define bioefficacy. J. Am. Nutr. Assoc. 2022, 41, 511–539. [Google Scholar] [CrossRef] [PubMed]
- Himalian, R.; Singh, M.P. A Comparative account on Antioxidant activities, Total phenolic and Flavonoid contents of Punicagranatum, Carica papaya, Foeniculumvulgare, Trigonellafoenum-graecum, and Urticadioica: An in vitro Evaluation. Res. J. Pharm. Technol. 2022, 15, 1175–1183. [Google Scholar] [CrossRef]
- Yousuf, S.; Shabir, S.; Singh, M.P. Protection against Drug-Induced Liver Injuries through Nutraceuticals via Amelioration of Nrf-2 Signaling. J. Am. Nutr. Assoc. 2022. ahead of print. [Google Scholar] [CrossRef]
- Chakrabarty, R.; Yousuf, S.; Singh, M.P. Contributive Role of Hyperglycemia and Hypoglycemia toward the Development of Alzheimer’s disease. Mol. Neurobiol. 2022, 59, 4274–4291. [Google Scholar] [CrossRef]
- Guan, R.; Van Le, Q.; Yang, H.; Zhang, D.; Gu, H.; Yang, Y.; Peng, W. A review of dietary phytochemicals and their relation to oxidative stress and human diseases. Chemosphere 2021, 271, 129499. [Google Scholar] [CrossRef]
- Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 2018, 413, 122–134. [Google Scholar] [CrossRef]
- Bhusal, K.K.; Magar, S.K.; Thapa, R.; Lamsal, A.; Bhandari, S.; Maharjan, R.; Shrestha, S.; Shrestha, J. Nutritional and pharmacological importance of stinging nettle (Urtica dioica L.): A review. Heliyon 2022, 8, e09717. [Google Scholar] [CrossRef]
- Shabir, S.; Yousuf, S.; Singh, S.K.; Vamanu, E.; Singh, M.P. Ethnopharmacological Effects of Urtica dioica, Matricaria chamomilla, and Murraya koenigii on Rotenone-Exposed D. melanogaster: An Attenuation of Cellular, Biochemical, and Organismal Markers. Antioxidants 2022, 11, 1623. [Google Scholar] [CrossRef]
- Rathore, S.; Raj, Y.; Debnath, P.; Kumar, M.; Kumar, R. Ethnopharmacology, phytochemistry, agrotechnology, and conservation of Inula racemosa Hook f.—A critically endangered medicinal plant of the western Himalaya. J. Ethnopharmacol. 2022, 283, 114613. [Google Scholar] [CrossRef]
- Hashem, A.H.; Salem, S.S. Green and eco-friendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnol. J. 2022, 17, 2100432. [Google Scholar] [CrossRef]
- Xie, L.-K.; Xu, X.-J.; Wu, X.; Wang, M.-J.; Gao, C.-F.; Wang, D.-M.; Ren, S.-M.; Pan, Y.-N.; Liu, X.-Q. Capsella bursa-pastoris (L.) Medic. Extract alleviates cataract development by regulating the mitochondrial apoptotic pathway of the lens epithelial cells. J. Ethnopharmacol. 2022, 284, 114783. [Google Scholar] [CrossRef]
- Babaei, G.; Aziz, S.G.G.; Bazl, M.R.; Ansari, M.H.K. A comprehensive review of anticancer mechanisms of action of alantolactone. Biomed. Pharmacother. 2021, 136, 111231. [Google Scholar] [CrossRef]
- Esposito, S.; Bianco, A.; Russo, R.; Di Maro, A.; Isernia, C.; Pedone, P.V. Therapeutic perspectives of molecules from Urtica dioica extracts for cancer treatment. Molecules 2019, 24, 2753. [Google Scholar] [CrossRef] [Green Version]
- Violi, F.; Nocella, C.; Loffredo, L.; Carnevale, R.; Pignatelli, P. Interventional study with vitamin E in cardiovascular disease and meta-analysis. Free Radic. Biol. Med. 2022, 178, 26–41. [Google Scholar] [CrossRef]
- Prakash, C.; Chhikara, S.; Kumar, V. Mitochondrial dysfunction in arsenic-induced hepatotoxicity: Pathogenic and therapeutic implications. Biol. Trace Elem. Res. 2022, 200, 261–270. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, L.-T.; Wang, X.-Y.; Lang, Z.-F.; Meng, X.-H.; Guo, S.-F.; Yan, B.; Zhan, T.; Zheng, H.-Z.; Wang, H.-W. Lyciumbarbarum polysaccharides attenuate kidney injury in septic rats by regulating Keap1-Nrf2/ARE pathway. Life Sci. 2020, 242, 117240. [Google Scholar] [CrossRef]
- Tuttis, K.; da Costa, D.L.M.G.; Nunes, H.L.; Specian, A.F.L.; Serpeloni, J.M.; dos Santos, L.C.; Varanda, E.A.; Vilegas, W.; Martínez-Lopez, W.; de SyllosCólus, I.M. Pouteria ramiflora (Mart.) Radlk. Extract: Flavonoids quantification and chemopreventive effect on HepG2 cells. J. Toxicol. Environ. Health A 2018, 81, 792–804. [Google Scholar] [CrossRef]
- Singh, M.P.; Kwak, G.H.; Kim, K.Y.; Kim, H.Y. Methionine sulfoxide reductase A protects hepatocytes against acetaminophen-induced toxicity via regulation of thioredoxin reductase 1 expression. Biochem. Biophys. Res. Commun. 2017, 487, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Kwak, G.H.; Singh, M.P.; Gladyshev, V.N.; Kim, H.Y. Selenoprotein MsrB1 deficiency exacerbates acetaminophen-induced hepatotoxicity via increased oxidative damage. Arch. Biochem. Biophys. 2017, 634, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Niroula, A.; Amgain, N.; Rashmi, K.C.; Adhikari, S.; Acharya, J. Pigments, ascorbic acid, total polyphenols and antioxidant capacities in deetiolated barley (Hordeum vulgare) and wheat (Triticum aestivum) microgreens. Food Chem. 2021, 354, 129491. [Google Scholar] [CrossRef] [PubMed]
- Nirmala, C.; Bisht, M.S.; Bajwa, H.K.; Santosh, O. Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 2018, 77, 91–99. [Google Scholar] [CrossRef]
- De Oliveira, V.S.; Ferreira, F.S.; Cople, M.C.R.; Labre, T.D.S.; Augusta, I.M.; Gamallo, O.D.; Saldanha, T. Use of natural antioxidants in the inhibition of cholesterol oxidation: A review. Compreh. Rev. Food Sci. Food Saf. 2018, 17, 1465–1483. [Google Scholar] [CrossRef] [Green Version]
- Hoang, H.T.; Moon, J.Y.; Lee, Y.C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges, and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
- Danciu, C.; Zupko, I.; Bor, A.; Schwiebs, A.; Radeke, H.; Hancianu, M.; Cioanca, O.; Alexa, E.; Oprean, C.; Bojin, F.; et al. Botanical therapeutics: Phytochemical screening and biological assessment of chamomile, parsley and celery extracts against A375 human melanoma and dendritic cells. Int. J. Mol. Sci. 2018, 19, 3624. [Google Scholar] [CrossRef] [Green Version]
- Kalachaveedu, M.; Raghavan, D.; Telapolu, S.; Kuruvilla, S.; Kedike, B. Phytoestrogenic effect of Inula racemosa Hook f—A cardioprotective root drug in traditional medicine. J. Ethnopharmacol. 2018, 210, 408–416. [Google Scholar] [CrossRef]
- Meryem, B.; Meriem, M.; Sarah, B.; Ali, R. Antioxidant and antimicrobial activities, and HPLC-PDA-ESI-MS profile of phenolic extract of Urtica dioica L. SAJEB 2020, 10, 427–437. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Wei, C.; Li, J.; Sun, W. Silver ion chromatography for peak resolution enhancement: Application to the preparative separation of two sesquiterpenes using online heart-cutting LC-LC technique. Talanta 2018, 187, 252–258. [Google Scholar] [CrossRef]
- Wang, N.; Wang, H.; Zhang, J.; Ji, X.; Su, H.; Liu, J.; Wang, J.; Zhao, W. Endogenous peroxynitrite activated fluorescent probe for revealing anti-tuberculosis drug-induced hepatotoxicity. Chin. Chem. Lett. 2022, 33, 1584–1588. [Google Scholar] [CrossRef]
- Fattahi, S.; Zabihi, E.; Abedian, Z.; Pourbagher, R.; Ardekani, A.M.; Mostafazadeh, A.; Akhavan-Niaki, H. Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on HeLa and BT-474 Cell lines. Int. J. Mol. Cell. Med. 2014, 3, 102. [Google Scholar]
- Kataki, M.S.; Murugamani, V.; Rajkumari, A.; Mehra, P.S.; Awasthi, D.; Yadav, R.S. Antioxidant, hepatoprotective, and anthelmintic activities of methanol extract of Urtica dioica L. Leaves. Pharm. Crop. 2012, 3, 38–46. [Google Scholar] [CrossRef]
- Gülçin, I.; Küfrevioǧlu, Ö.İ.; Oktay, M.; Büyükokuroǧlu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef]
- Shonte, T.T.; Duodu, K.G.; de Kock, H.L. Effect of drying methods on chemical composition and antioxidant activity of underutilized stinging nettle leaves. Heliyon 2020, 6, e03938. [Google Scholar] [CrossRef]
- Otles, S.; Yalcin, B. Phenolic compounds analysis of root, stalks, and leaves of nettle. Sci. World J. 2012, 2012, 564367. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Pangloli, P.; Perumal, R.; Cox, S.; Noronha, L.E.; Dia, V.P.; Smolensky, D. A comparative study on phenolic content, antioxidant activity and anti-inflammatory capacity of aqueous and ethanolic extracts of sorghum in lipopolysaccharide-induced RAW 264.7 macrophages. Antioxidants 2020, 9, 1297. [Google Scholar] [CrossRef]
- Yang, X.; Kang, S.M.; Jeon, B.T.; Kim, Y.D.; Ha, J.H.; Kim, Y.T.; Jeon, Y.J. Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. J. Sci. Food Agric. 2011, 91, 1925–1927. [Google Scholar] [CrossRef]
- Mohan, S.; Gupta, D. Phytochemical analysis and differential in vitro cytotoxicity assessment of root extracts of Inula racemosa. Biomed. Pharmacother. 2017, 89, 781–795. [Google Scholar] [CrossRef]
- Scalzo, J.; Politi, A.; Pellegrini, N.; Mezzetti, B.; Battino, M. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutritio 2015, 21, 207–213. [Google Scholar] [CrossRef]
- Pakkirisamy, M.; Kalakandan, S.K.; Ravichandran, K. Phytochemical screening, GC–MS, FT-IR analysis of methanolic extract of Curcuma caesiaRoxb (Black Turmeric). Pharmacogn. J. 2017, 9, 952–956. [Google Scholar] [CrossRef]
- Wani, M.A.; Jan, N.; Qazi, H.A.; Andrabi, K.I.; John, R. Cold stress induces biochemical changes, fatty acid profile, antioxidant system and gene expression in Capsella bursa pastoris L. Acta Physiol. Plant 2018, 40, 167. [Google Scholar] [CrossRef]
- Rehman Nengroo, Z.; Rauf, A. Inula racemosa and Digitalis purpurea from Kashmir: Fatty acid composition, antioxidant, antibacterial activities, and functional group evaluation. Flavour Fragr. J. 2020, 35, 653–665. [Google Scholar] [CrossRef]
- Kaur, R.; Chahal, K.K. Isolation, Chemical Transformation, and Antifungal Potential of Sesquiterpene Lactones from Inula Racemosa. Chem. Nat. Compd. 2020, 56, 207–212. [Google Scholar] [CrossRef]
- Zenão, S.; Aires, A.; Dias, C.; Saavedra, M.J.; Fernandes, C. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin-resistant Staphylococcus aureus isolated from diabetic foot ulcers. J. Herb. Med. 2017, 10, 53–58. [Google Scholar] [CrossRef]
- Parashar, A.; Mehta, V.; Udayabanu, M. Rutin alleviates chronic unpredictable stress-induced behavioral alterations and hippocampal damage in mice. Neurosci. Lett. 2017, 656, 65–71. [Google Scholar] [CrossRef]
- Semwal, S.; Mukhija, M.; Joshi, B.C. Antioxidant potential and total phenolic content of Urtica dioica (whole plant). J. Appl. Pharm. 2015, 7, 120–128. [Google Scholar] [CrossRef]
- Hu, Q.; Qiu, Y.; Zhang, G.; Guo, X. Capsella bursa-pastoris extract as an eco-friendly inhibitor on the corrosion of Q235 carbon steels in 1 mol· L− 1 hydrochloric acid. Chin. J. Chem. Eng. 2015, 23, 1408–1415. [Google Scholar] [CrossRef]
- Kubínová, R.; Spačková, V.; Svajdlenka, E.; Lučivjanská, K. Antioxidační aktivita extraktů a HPLC analýza flavonoidů Capsella bursa-pastoris (L.) Medik [Antioxidant activity of extracts and HPLC analysis of flavonoids from Capsella bursa-pastoris (L.) Medik]. Ceska Slov. Farm. 2013, 62, 174–176. [Google Scholar]
- Llovet, J.M. Hepatocellular carcinoma. Lancet 2003, 362, 1907–1917. [Google Scholar] [CrossRef] [Green Version]
- Tunissiolli, N.M.; Castanhole-Nunes, M.M.U.; Biselli-Chicote, P.M.; Pavarino, É.C.; da Silva, R.F.; Goloni-Bertollo, E.M. Hepatocellular carcinoma: A comprehensive review of biomarkers, clinical aspects, and therapy. Asian Pac. J. Cancer Prev. 2017, 18, 863. [Google Scholar] [CrossRef]
- Kardan, M.; Rafiei, A.; Golpour, M.; Ebrahimzadeh, M.A.; Akhavan-Niaki, H.; Fattahi, S. Urtica dioica extract inhibits cell proliferation and induces apoptosis in HepG2 and HTC116 as gastrointestinal cancer cell lines. Curr. Med. Chem. Anticancer Agents 2020, 20, 963–969. [Google Scholar] [CrossRef]
- Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in phytochemical delivery systems for improved anticancer activity. Biotechnol. Adv. 2020, 38, 107382. [Google Scholar] [CrossRef]
- Gach, K.; Długosz, A.; Janecka, A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. NSAPCC 2015, 388, 477–486. [Google Scholar] [CrossRef]
- Aliarab, A.; Abroon, S.; Rasmi, Y.; Aziz, S.G.G. Application of sesquiterpene lactone: A new promising way for cancer therapy based on anticancer activity. Biomed. Pharmacother. 2018, 106, 239–246. [Google Scholar] [CrossRef]
- Stanojević, L.P.; Stanković, M.Z.; Cvetković, D.J.; Cakić, M.D.; Ilić, D.P.; Nikolić, V.D.; Stanojević, J.S. The effect of extraction techniques on yield, extraction kinetics, and antioxidant activity of aqueous-methanolic extracts from nettle (Urtica dioica L.) leaves. Sep. Sci. Technol. 2016, 51, 1817–1829. [Google Scholar] [CrossRef]
- Perva-Uzunalić, A.; Škerget, M.; Knez, Ž.; Weinreich, B.; Otto, F.; Grüner, S. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 2006, 96, 597–605. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.D.; Coube, C.S.; Leitão, S.G. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Kutlu, G.; Bozkurt, F.; Tornuk, F. Extraction of a novel water-soluble gum from nettle (Urtica dioica) seeds: Optimization and characterization. Int. J. Biol. Macromol. 2020, 162, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Gil, M.I.; Cremin, P.; Waterhouse, A.L.; Hess-Pierce, B.; Kader, A.A. HPLC− DAD− ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. J. Agri. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [CrossRef] [PubMed]
- Minocha, T.; Das, M.; Rai, V.; Verma, S.S.; Awasthee, N.; Gupta, S.C.; Haldar, C.; Yadav, S.K. Melatonin induces apoptosis and cell cycle arrest in cervical cancer cells via inhibition of NF-κB pathway. Inflammopharmacology 2022, 30, 1411–1429. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Gonzalez-Alvarez, M.; Noguerol-Pato, R.; Gonzalez-Barreiro, C.; Cancho-Grande, B.; Simal-Gandara, J. Multivariate statistical techniques for the analysis of instrumental and sensorial datasets: The case of aromas and their perception in wines. AgroLife Sci. J. 2013, II, 9–21. [Google Scholar]
Samples | R2-Value DPPH/ABTS-TPC | Correlation Association | R2-Value DPPH/ABTS-TFC | Correlation Association |
---|---|---|---|---|
UD (AQ) | 0.919 and 0.853 | Strongly correlated | 0.842 and 0.758 | Strongly correlated |
UD (ETH) | 0.959 and 0.941 | Strongly correlated | 0.892 and 0.864 | Strongly correlated |
CBP (AQ) | 0.994 and 0.929 | Strongly correlated | 0.982 and 0.951 | Strongly correlated |
CBP (ETH) | 0.935 and 0.992 | Strongly correlated | 0.906 and 0.980 | Strongly correlated |
IR (AQ) | 0.974 and 0.990 | Strongly correlated | 0.677 and 0.413 | Moderately correlated |
IR (ETH) | 0.879 and 0.749 | Strongly correlated | 0.950 and 0.997 | Strongly correlated |
S. NO | Peak Number (cm−1) | Bond Type | Functional Group |
---|---|---|---|
1 | 3329 | OH Stretching | Alcohols |
2 | 2922 | C-H stretching | Alkanes |
3 | 2858 | C-H stretching | Aldehyde |
4 | 1619 | C=C stretch | Aromatic compounds |
5 | 1399 | C-H bending | Methylene group |
6 | 1048 | C-O stretch | Aliphatic amines |
7 | 714 | C-Cl stretch | Alkyl and aryl halides |
S. NO | Peak Number (cm−1) | Bond Type | Functional Group |
---|---|---|---|
1 | 3289 | OH Stretching | Phenols and alcohols |
2 | 2922 | C-H stretching | Alkanes |
3 | 1608 | C=C stretching | Aromatic compounds |
4 | 1512 | N-O stretching | Nitro compounds |
5 | 1358 | C-H bending | Methylene group |
6 | 1045 | C-O stretch | Aliphatic amines |
7 | 540 | C-I stretch | Alkyl and aryl halides |
S. NO | Peak Number (cm−1) | Bond Type | Functional Group |
---|---|---|---|
1 | 3349 | O-H Stretching | Aliphatic primary amine |
2 | 2924 | C-H stretch | Alkanes |
3 | 2859 | C-H stretch | Alkene |
4 | 1741 | C=O stretch | Ketones |
5 | 1655 | C=C Stretch | Conjugated alkane |
6 | 1455 | C-H bending | Methylene group |
7 | 1369 | NO2 stretch | Nitro compounds |
8 | 1259 | C-F stretch | Alkyl and aryl halides |
9 | 1038 | C-F stretch | Alkyl and aryl halides |
10 | 812 | C-Cl stretch | Alkyl and aryl halides |
11 | 658 | C=C bending | Alkene |
12 | 660 | C=C bending | Alkene |
13 | 618 | C-Br stretch | Alkyl and aryl halides |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousuf, S.; Shabir, S.; Kauts, S.; Minocha, T.; Obaid, A.A.; Khan, A.A.; Mujalli, A.; Jamous, Y.F.; Almaghrabi, S.; Baothman, B.K.; et al. Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells. Molecules 2022, 27, 8629. https://doi.org/10.3390/molecules27238629
Yousuf S, Shabir S, Kauts S, Minocha T, Obaid AA, Khan AA, Mujalli A, Jamous YF, Almaghrabi S, Baothman BK, et al. Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells. Molecules. 2022; 27(23):8629. https://doi.org/10.3390/molecules27238629
Chicago/Turabian StyleYousuf, Sumaira, Shabnam Shabir, Simran Kauts, Tarun Minocha, Ahmad A. Obaid, Anmar A. Khan, Abdulrahman Mujalli, Yahya F. Jamous, Sarah Almaghrabi, Bandar K. Baothman, and et al. 2022. "Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells" Molecules 27, no. 23: 8629. https://doi.org/10.3390/molecules27238629
APA StyleYousuf, S., Shabir, S., Kauts, S., Minocha, T., Obaid, A. A., Khan, A. A., Mujalli, A., Jamous, Y. F., Almaghrabi, S., Baothman, B. K., Hjazi, A., Singh, S. K., Vamanu, E., & Singh, M. P. (2022). Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells. Molecules, 27(23), 8629. https://doi.org/10.3390/molecules27238629