Rapid Detection of Benzo[a]pyrene in Extra Virgin Olive Oil Using Fluorescence Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Samples, Chemicals and Reagents
3.2. Instrumentation
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Menzie, C.A.; Potocki, B.B.J.S. Exposure carcinogenic. Environ. Health Perspect. 1992, 26, 1166–1170. [Google Scholar]
- Mafra, I.; Amaral, J.S.; Oliveira, M.B.P.P. Polycyclic Aromatic Hydrocarbons (PAH) in Olive Oils and Other Vegetable Oils; Potential for Carcinogenesis. In Olives and Olive Oil in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2010; pp. 489–498. [Google Scholar] [CrossRef]
- Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002, 20, 243–248. [Google Scholar] [CrossRef]
- Bertoz, V.; Purcaro, G.; Conchione, C.; Moret, S. A review on the occurrence and analytical determination of pahs in olive oils. Foods 2021, 10, 324. [Google Scholar] [CrossRef]
- Zuckerman, A.J. IARC monographs on the evaluation of carcinogenic risks to humans. J. Clin. Pathol. 1995, 48, 691. [Google Scholar] [CrossRef]
- European Commission. Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food; Management; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- EC Commission Regulation (EU). No 835/2011 of 19 August 2011. Off. J. Eur. Union 2011, L 215, 4–8. [Google Scholar]
- Purcaro, G.; Picardo, M.; Barp, L.; Moret, S.; Conte, L.S. Direct-immersion solid-phase microextraction coupled to fast gas chromatography mass spectrometry as a purification step for polycyclic aromatic hydrocarbons determination in olive oil. J. Chromatogr. A 2013, 1307, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Jalili, V.; Barkhordari, A.; Ghiasvand, A. Liquid-phase microextraction of polycyclic aromatic hydrocarbons: A review. Rev. Anal. Chem. 2020, 39, 1–19. [Google Scholar] [CrossRef]
- Plaza-Bolaños, P.; Frenich, A.G.; Vidal, J.L.M. Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. J. Chromatogr. A 2010, 1217, 6303–6326. [Google Scholar] [CrossRef]
- Zhou, R.Z.; Jiang, J.; Mao, T.; Zhao, Y.S.; Lu, Y. Multiresidue analysis of environmental pollutants in edible vegetable oils by gas chromatography-tandem mass spectrometry. Food Chem. 2016, 207, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.K.; Zhang, D.D.; Liu, Y.L. Incidence and survey of polycyclic aromatic hydrocarbons in edible vegetable oils in China. Food Control 2016, 62, 165–170. [Google Scholar] [CrossRef]
- Windal, I.; Boxus, L.; Hanot, V. Validation of the analysis of the 15+1 European-priority polycyclic aromatic hydrocarbons by donor—Acceptor complex chromatography and high-performance liquid chromatography—Ultraviolet/fluorescence detection. J. Chromatogr. A 2008, 1212, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Hollosi, L.; Wenzl, T. Development and optimisation of a dopant assisted liquid chromatographic-atmospheric pressure photo ionisation-tandem mass spectrometric method for the determination of 15+1 EU priority PAHs in edible oils. J. Chromatogr. A 2011, 1218, 23–31. [Google Scholar] [CrossRef] [PubMed]
- López-Jiménez, F.J.; Ballesteros-Gómez, A.; Rubio, S. Determination of polycyclic aromatic hydrocarbons (PAH4) in food by vesicular supramolecular solvent-based microextraction and LC-fluo-rescence detection. Food Chem. 2014, 143, 341–347. [Google Scholar] [CrossRef]
- Barp, L.; Moret, S.; Purcaro, G. Monitoring and Occurrence of Heavy PAHs in Pomace Oil Supply Chain Using a Double-Step Solid-Phase Purification and HPLC-FLD Determination. Foods 2022, 11, 2737. [Google Scholar] [CrossRef]
- Da Silva, S.A.; Sampaio, G.R.; da Silva Torres, E.A.F. Optimization and validation of a method using UHPLC-fluorescence for the analysis of polycyclic aromatic hydrocarbons in cold-pressed vegetable oils. Food Chem. 2017, 221, 809–814. [Google Scholar] [CrossRef]
- Veiga, L.L.A.; Amorim, H.; Moraes, J.; Silva, M.C.; Raices, R.S.L.; Quiterio, S.L. Quantification of polycyclic aromatic hydrocarbons in toasted guaraná (Paullinia cupana) by high-performance liquid chromatography with a fluorescence detector. Food Chem. 2014, 152, 612–618. [Google Scholar] [CrossRef]
- Polak-Śliwińska, M.; Paszczyk, B.; Śliwiński, M. Evaluation of Polycyclic Aromatic Hydrocarbons in Smoked Cheeses Made in Poland by HPLC Method. Molecules 2022, 27, 6906. [Google Scholar] [CrossRef]
- Sinanoglou, V.J.; Cavouras, D.; Xenogiannopoulos, D.; Proestos, C.; Zoumpoulakis, P. Quality assessment of pork and Turkey hams using FT-IR spectroscopy, colorimetric, and image analysis. Foods 2018, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Orfanakis, E.; Markoulidakis, M.; Philippidis, A.; Zoumi, A.; Velegrakis, M. Optical spectroscopy methods combined with multivariate statistical analysis for the classification of Cretan thyme, multi-floral and honeydew honey. J. Sci. Food Agric. 2021, 101, 5337–5347. [Google Scholar] [CrossRef] [PubMed]
- Kontzedaki, R.; Orfanakis, E.; Sofra-Karanti, G.; Stamataki, K.; Philippidis, A.; Zoumi, A.; Velegrakis, M. Verifying the geographical origin and authenticity of greek olive oils by means of optical spectroscopy and multivariate analysis. Molecules 2020, 25, 4180. [Google Scholar] [CrossRef]
- Philippidis, A.; Poulakis, E.; Kontzedaki, R.; Orfanakis, E.; Symianaki, A.; Zoumi, A.; Velegrakis, M. Application of ultraviolet-visible absorption spectroscopy with machine learning techniques for the classification of cretan wines. Foods 2021, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Fragkoulis, N.; Samartzis, P.C.; Velegrakis, M. Commercial milk discrimination by fat content and animal origin using optical absorption and fluorescence spectroscopy. Int. Dairy J. 2021, 123, 105181. [Google Scholar] [CrossRef]
- Giakoumaki, A.; Philippidis, A.; Siozos, P.; Pyrri, I.; Anglos, D.; Pouli, P. Development of a methodology for the characterisation and assessment of biodeteriogens on archaeological surfaces by use of a portable LED-induced fluorescence instrument. Herit. Sci. 2022, 10, 204. [Google Scholar] [CrossRef]
- Giamarchi, P.; Stephan, L.; Salomon, S.; Le Bihan, A. Multicomponent determination of a polyaromatic hydrocarbon mixture by direct fluorescence measurements. J. Fluoresc. 2000, 10, 393–402. [Google Scholar] [CrossRef]
- Guiteras, J.; Beltrán, J.L.; Ferrer, R. Quantitative multicomponent analysis of polycyclic aromatic hydrocarbons in water samples. Anal. Chim. Acta 1998, 361, 233–240. [Google Scholar] [CrossRef]
- Driskill, A.K.; Alvey, J.; Dotson, A.D.; Tomco, P.L. Monitoring polycyclic aromatic hydrocarbon (PAH) attenuation in Arctic waters using fluorescence spectroscopy. Cold Reg. Sci. Technol. 2018, 145, 76–85. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wu, P.P.; Liu, Q.; Luo, H.D.; Cao, S.H.; Lin, G.C.; Fu, D.S.; Zhong, X.D.; Li, Y.Q. A Simple Fluorescence Spectroscopic Approach for Simultaneous and Rapid Detection of Four Polycyclic Aromatic Hydrocarbons (PAH4) in Vegetable Oils. Food Anal. Methods 2016, 9, 3209–3217. [Google Scholar] [CrossRef]
- Catena, S.; Sanllorente, S.; Sarabia, L.A.; Boggia, R.; Turrini, F.; Ortiz, M.C. Unequivocal identification and quantification of PAHs content in ternary synthetic mixtures and in smoked tuna by means of excitation-emission fluorescence spectroscopy coupled with PARAFAC. Microchem. J. 2020, 154, 104561. [Google Scholar] [CrossRef]
- Pena, E.A.; Ridley, L.M.; Murphy, W.R.; Sowa, J.R.; Bentivegna, C.S. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development. Environ. Toxicol. Chem. 2015, 34, 1946–1958. [Google Scholar] [CrossRef]
- Drakopoulou, S.; Orfanakis, E.; Karagiannaki, I.; Gaitis, F.; Skoulika, S.; Papaioannou, A.; Boukouvalas, G.; Petropoulos, G.; Katsoudas, V.; Kontzedaki, R.; et al. Comparative Evaluation of Different Targeted and Untargeted Analytical Approaches to Assess Greek Extra Virgin Olive Oil Quality and Authentication. Molecules 2022, 27, 1350. [Google Scholar] [CrossRef]
- Stavrakakis, G.; Philippidis, A.; Velegrakis, M. Application of Optical Spectroscopic Techniques and Multivariate Statistical Analysis as a Method of Determining the Percentage and Type of Adulteration of Extra Virgin Olive Oil. Food Anal. Methods 2022, 15, 285–293. [Google Scholar] [CrossRef]
Model | Statistical Parameters | ||
---|---|---|---|
λexc (nm) | Selected Region (nm) | R2 | RMSECV |
365 | 400–450 | 0.966 | 1.526 |
385 | 400–450 | 0.957 | 1.753 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orfanakis, E.; Koumentaki, A.; Zoumi, A.; Philippidis, A.; Samartzis, P.C.; Velegrakis, M. Rapid Detection of Benzo[a]pyrene in Extra Virgin Olive Oil Using Fluorescence Spectroscopy. Molecules 2023, 28, 4386. https://doi.org/10.3390/molecules28114386
Orfanakis E, Koumentaki A, Zoumi A, Philippidis A, Samartzis PC, Velegrakis M. Rapid Detection of Benzo[a]pyrene in Extra Virgin Olive Oil Using Fluorescence Spectroscopy. Molecules. 2023; 28(11):4386. https://doi.org/10.3390/molecules28114386
Chicago/Turabian StyleOrfanakis, Emmanouil, Aggeliki Koumentaki, Aikaterini Zoumi, Aggelos Philippidis, Peter C. Samartzis, and Michalis Velegrakis. 2023. "Rapid Detection of Benzo[a]pyrene in Extra Virgin Olive Oil Using Fluorescence Spectroscopy" Molecules 28, no. 11: 4386. https://doi.org/10.3390/molecules28114386
APA StyleOrfanakis, E., Koumentaki, A., Zoumi, A., Philippidis, A., Samartzis, P. C., & Velegrakis, M. (2023). Rapid Detection of Benzo[a]pyrene in Extra Virgin Olive Oil Using Fluorescence Spectroscopy. Molecules, 28(11), 4386. https://doi.org/10.3390/molecules28114386