Sea Fennel (Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals
Abstract
:1. Introduction
2. Health-Beneficial Compounds
2.1. Polyphenols
Source | Extraction | Chlorogenic Acid (mg g−1 DW) | TPC (mg g−1 DW) | TFC (mg g−1 DW) | Reference |
---|---|---|---|---|---|
Whole plant | Water (100%) | 42.61 a | N/A | N/A | [22] |
Ethanol (70%) | 22.3 a | N/A | N/A | [20] | |
Ethanol (50%) | N/A | 3.6 | N/A | [6] | |
Ethanol (40%) | 58.48 a | N/A | N/A | [22] | |
Ethanol (40%) | N/A | 23.44 a | 16.6 a | [29] | |
Ethanol (40%) | N/A | 0.78 a | 0.49 a | ||
Methanol (80%) | 6.36 | 47.1 | 17.3 | [10] | |
Methanol (80%) | N/A | 2.59 b | 21.14 b | [27] | |
Methanol (70%) | 2.58 | 2.55–10.84 | 2.25–15.08 | [13] | |
Methanol and hexane | N/A | 8.11 | 56.20 | [30] | |
Acetone (80%) | N/A | 4.1–7.9 a | 2.9–6.1 a | [31] | |
Leaves | Ethanol (80%) | 7.25 a | 31.7 a | 17.3 a | [24] |
Ethanol (80%) | 7.07–16.28 | ~16-22 | N/A | [15] | |
Methanol (80%) | N/A | 26.3 a | 15.6 a | [28] | |
Methanol (70%) | 1.4–4.8 | ~5.0–45.0 | 2.8–41 | [9] | |
Methanol (70%) | ~3 | N/A | N/A | [7] | |
Methanol (50%) | ~28 | ~32 | N/A | [17] | |
Methanol (100%) | N/A | 0.9 b | 2.19 b | [14] | |
Acetone (80%) | N/A | 7.16 | 4.77 | [16] | |
Acetone (80%) | N/A | 8.27 | 3.45 | ||
Seeds | Methanol (70%) | 0.29 | 4.23–6.03 | N/A | [32] |
Essential oil | Distillation | N/A | 7.5 d | N/A | [33] |
By product | Distillation | 4.48–17.69 c | 70–150 c | 150–310 c | [21] |
Distillation | 13.67 a | N/A | N/A | [21] | |
Infusion/decoction from leaves/stems/flowers | Water (100%) | 8.24–8.67 e | 33.7–35.3 e | 54.4–57.2 e | [23] |
Fermented leaves | Methanol (80%) | N/A | 0.77 b | 3.9 b | [27] |
Methanol (80%) | N/A | 0.4 | N/A | [34] |
2.2. Essential Oils (EOs)
Source | Extraction | Oil Yield (%) | Monoterpene Hydrocarbons (%) | Oxygenated Monoterpenes (%) | Phenylpropanoids (%) | Reference | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sabinene | γ-Terpinene | Limonene | β-Ocimene | p-Cimene | α-Pinene | α/β-Phellandrene | Terpenen-4-ol | Carvacrol Methyl Ether | Thymol Methyl Ether | Dillapiole | ||||
Whole plant | SD | N/A | 49.5 | 31.4 | 2.7 | N/A | 0.6 | 9.6 | N/A | 1.5 | N/A | N/A | N/A | [33] |
SD | 0.2 | 5 | 50 | 8.9 | 0.31 | 8.9 | 2.6 | 0.2 | 0.6 | 0.3 | 18.2 | 2.5 | [20] | |
HD | 0.2 | 0.5 | 19.3 | N/A | N/A | 5.8 | 1 | 6.6 | 2.3 | N/A | 20.6 | 40.3 | [31] | |
HD | 0.3 | 2.2 | 30.6 | N/A | N/A | 9.9 | 1.6 | N/A | 0.4 | N/A | 40.4 | 14.3 | ||
HD | 0.1 | 22.3 | 28.4 | 12.1 | 8.9 | 2.5 | 7.1 | 10.7 | 1.2 | 2.6 | 0.2 | N/A | [27] | |
HD + ME | N/A | N/A | 33 | N/A | N/A | 8.7 | N/A | N/A | N/A | N/A | 22 | 17.5 | [41] | |
Whole plant (flowering period) | HD + ME | 0.8 | N/A | 32.9 | N/A | N/A | N/A | N/A | N/A | N/A | 21.9 | N/A | 17.5 | [42] |
HD | N/A | 25.2 | 7.1 | 51.4 | 4.0 | 1.8 | 4.3 | N/A | 1.8 | N/A | N/A | N/A | [26] | |
MHD | N/A | 27.8 | 6.5 | 53.1 | 3.0 | 2.5 | 2.3 | N/A | 1.3 | N/A | N/A | N/A | [26] | |
HD | 2.3 | 35.6 | 18.7 | N/A | 1.6 | N/A | 0.9 | 22.5 | 3.1 | N/A | 10.9 | N/A | [36] | |
HD | 0.6 | 12.4 | 19.9 | 38.4 | 5 | 2.6 | 1.8 | N/A | 3.1 | 4.2 | 0.1 | 8.1 | [43] | |
HD | 0.1 | 0.7 | 50.5 | N/A | N/A | 12.6 | 0.3 | N/A | N/A | 0.1 | 33.7 | N/A | [10] | |
HD | N/A | 26.5 | 2.8 | 58.4 | N/A | N/A | 1.5 | N/A | 5.6 | N/A | N/A | N/A | [44] | |
HD | 0.4 | N/A | >10 | N/A | >10 | N/A | N/A | >10 | N/A | N/A | >10 | N/A | [45] | |
HD | N/A | 32 | 33.6 | 0.2 | 2.8 | 3.9 | 1.2 | 0.6 | 3.4 | N/A | 15.7 | 0.1 | [46] | |
Leaves (fermented) | HD | 0.1 | 1.3 | 42.1 | 7.5 | 9.6 | 5.7 | 3.5 | 12 | 2.8 | 8.6 | 0.4 | N/A | [27] |
Leaves | UAE | N/A | 8.1–25.8 | N/A | 0.1 | N/A | 0.7 | 0.2 | 0.2 | 67.7–89.1 | [7] | |||
HD | 0.6 | 13.4 | 12.0 | 57.5 | N/A | N/A | 0.1 | N/A | 6.9 | N/A | 0.3 | N/A | [37] | |
HD | 0.6 | 51.5 | 3.5 | 36.3 | N/A | 0.1 | 0.1 | N/A | 5.4 | N/A | N/A | N/A | [21] | |
HD | 0.5 | 0.4 | 22.5 | N/A | N/A | 4.8 | N/A | N/A | 0.2 | N/A | 27.8 | 41.4 | [38] | |
HD | N/A | 0.4–16.2 | 27.1–41.5 | N/A | 1.8–2.1 | 5.2–7.5 | 0.8–5.9 | 0.1–13.3 | 0.3–3.5 | N/A | 2.3–14.9 | 0.2–41 | [40] | |
SFE | N/A | 0.2–9.3 | 14.4–40.1 | N/A | 1.3–1.9 | 4.1–11.8 | 0.3–4.9 | 0.1–6.1 | 0.2–1.8 | N/A | 2.3–22.9 | 0.2–64.2 | ||
Flowers | HD | 2.4 | 12.0 | 13.8 | 62.2 | N/A | N/A | 4.9 | N/A | 2.0 | N/A | 0.2 | N/A | [37] |
HD | 1.4 | 44.9 | 2.8 | 43.6 | N/A | N/A | 1.8 | N/A | 3.5 | N/A | N/A | N/A | [21] | |
HD | 0.3 | 0.7 | 43.3 | N/A | N/A | 14.7 | 0.9 | 0.1 | 0.3 | N/A | 34.3 | N/A | [38] | |
Stems | HD | 0.2 | 8.1 | 4.6 | 74.2 | N/A | N/A | 0.1 | N/A | 5.9 | N/A | 0.4 | NA | [37] |
HD | 0.3 | 0.5 | 32.8 | N/A | N/A | 5.9 | 1.1 | 0.2 | 0.2 | N/A | 26.8 | 31 | [38] | |
HD | 0.6 | 42.6 | 5.3 | 36.5 | N/A | 0.3 | 0.4 | N/A | 10.4 | N/A | N/A | N/A | [21] | |
HD | 0.6 | 43 | 10 | N/A | N/A | 13 | 10 | 13 | N/A | N/A | N/A | N/A | [47] | |
Seeds | HD | 0.6 | 43.3 | 10.6 | N/A | N/A | 13.3 | 10.6 | 13.2 | 1.2 | 0.1 | 2.1 | N/A | [47] |
HD | 3.6 | 1.0 | 39.7 | N/A | N/A | 26.1 | N/A | N/A | 1.1 | 0.1 | 20.1 | 7.9 | [38] |
2.3. Fatty Acids
2.4. Vitamins
2.5. Minerals
3. Compounds with Adverse Effects
4. Functional Traits
4.1. Antioxidant Activity
4.2. Antimicrobial Activity
4.3. Anti-Inflammatory, Anticarcinogenic, and Other Functional Activities
5. Exploitation of Sea Fennel for the Manufacturing of Innovative Foods and Food Ingredients
5.1. Fermented Preserves
5.2. Artificially Acidified Preserves
5.3. Shelf-Stable Green Sauces
5.4. Powders
5.5. Infusions and Decoctions
6. Exploitation of Sea Fennel for the Production of Nutraceuticals
6.1. Isolates
6.2. Extracts
7. Exploitation of Sea Fennel for Production of Edible Films
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atia, A.; Barhomi, Z.; Mokdad, R.; Chedly, A.; Abderrazak, S. Environmental Eco-Physiology and Economical Potential of the Halophyte Crithmum maritimum L. (Apiaceae). J. Med. Plant Res. 2011, 5, 3564–3571. [Google Scholar]
- Tardío, J.; De Cortes Sánchez-Mata, M.; Morales, R.; Molina, M.; García-Herrera, P.; Morales, P.; Díez-Marqués, C.; Fernández-Ruiz, V.; Cámara, M.; Pardo-De-Santayana, M.; et al. Ethnobotanical and Food Composition Monographs of Selected Mediterranean Wild Edible Plants. In Mediterranean Wild Edible Plants; Springer: New York, NY, USA, 2016; pp. 273–470. ISBN 9781493933297. [Google Scholar]
- Pavela, R.; Maggi, F.; Lupidi, G.; Cianfaglione, K.; Dauvergne, X.; Bruno, M.; Benelli, G. Efficacy of Sea Fennel (Crithmum maritimum L., Apiaceae) Essential Oils against Culex quinquefasciatus Say and Spodoptera littoralis (Boisd.). Ind. Crops Prod. 2017, 109, 603–610. [Google Scholar] [CrossRef]
- Regolamento Del Parco Regionale Del Conero. Adozione Delibera Di Cons. N 2014, 23, 1–276.
- Zenobi, S.; Fiorentini, M.; Zitti, S.; Aquilanti, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Orsini, R. Crithmum maritimum L.: First Results on Phenological Development and Biomass Production in Mediterranean Areas. Agronomy 2021, 11, 773. [Google Scholar] [CrossRef]
- Sánchez-Faure, A.; Calvo, M.M.; Pérez-Jiménez, J.; Martín-Diana, A.B.; Rico, D.; Montero, M.P.; del Carmen Gómez-Guillén, M.; López-Caballero, M.E.; Martínez-Alvarez, O. Exploring the Potential of Common Iceplant, Seaside Arrowgrass and Sea Fennel as Edible Halophytic Plants. Food Res. Int. 2020, 137, 109613. [Google Scholar] [CrossRef]
- Castillo, J.M.; Mancilla-Leytón, J.M.; Martins-Noguerol, R.; Moreira, X.; Moreno-Pérez, A.J.; Muñoz-Vallés, S.; Pedroche, J.J.; Figueroa, M.E.; García-González, A.; Salas, J.J.; et al. Interactive Effects between Salinity and Nutrient Deficiency on Biomass Production and Bio-Active Compounds Accumulation in the Halophyte Crithmum maritimum. Sci. Hortic. 2022, 301, 111136. [Google Scholar] [CrossRef]
- Renna, M. Reviewing the Prospects of Sea Fennel (Crithmum maritimum L.) as Emerging Vegetable Crop. Plants 2018, 7, 92. [Google Scholar] [CrossRef] [Green Version]
- Martins-Noguerol, R.; Matías, L.; Pérez-Ramos, I.M.; Moreira, X.; Muñoz-Vallés, S.; Mancilla-Leytón, J.M.; Francisco, M.; García-González, A.; DeAndrés-Gil, C.; Martínez-Force, E.; et al. Differences in Nutrient Composition of Sea Fennel (Crithmum maritimum) Grown in Different Habitats and Optimally Controlled Growing Conditions. J. Food Compost. Anal. 2022, 106, 104266. [Google Scholar] [CrossRef]
- Nabet, N.; Boudries, H.; Chougui, N.; Loupassaki, S.; Souagui, S.; Burló, F.; Hernández, F.; Carbonell-Barrachina, Á.A.; Madani, K.; Larbat, R. Biological Activities and Secondary Compound Composition from Crithmum maritimum Aerial Parts. Int. J. Food Prop. 2017, 20, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Giordano, R.; Saii, Z.; Fredsgaard, M.; Hulkko, L.S.S.; Poulsen, T.B.G.; Thomsen, M.E.; Henneberg, N.; Zucolotto, S.M.; Arendt-Nielsen, L.; Papenbrock, J.; et al. Pharmacological Insights into Halophyte Bioactive Extract Action on Anti-Inflammatory, Pain Relief and Antibiotics-Type Mechanisms. Molecules 2021, 26, 3140. [Google Scholar] [CrossRef]
- Karkanis, A.; Polyzos, N.; Kompocholi, M.; Petropoulos, S.A. Rock Samphire, a Candidate Crop for Saline Agriculture: Cropping Practices, Chemical Composition and Health Effects. J. Appl. Sci. 2022, 12, 737. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Irakli, M.; Boutsika, A.; Mellidou, I.; Maninis, N.; Sarrou, E.; Georgiadou, V.; Tourvas, N.; Krigas, N.; Moysiadis, T.; et al. Metabolomic Fingerprinting and Molecular Characterization of the Rock Samphire Germplasm Collection from the Balkan Botanic Garden of Kroussia, Northern Greece. Plants 2022, 11, 573. [Google Scholar] [CrossRef]
- Labiad, M.H.; Giménez, A.; Varol, H.; Tüzel, Y.; Egea-Gilabert, C.; Fernández, J.A.; Martínez-Ballesta, M.D.C. Effect of Exogenously Applied Methyl Jasmonate on Yield and Quality of Salt-Stressed Hydroponically Grown Sea Fennel (Crithmum maritimum L.). Agronomy 2021, 11, 1083. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Šimat, V.; Ljubenkov, I.; Burčul, F.; Grga, M.; Mihajlovski, M.; Lončar, R.; Katalinić, V.; Skroza, D. Influence of the Vegetation Period on Sea Fennel, Crithmum maritimum L. (Apiaceae), Phenolic Composition, Antioxidant and Anticholinesterase Activities. Ind. Crops Prod. 2018, 124, 947–953. [Google Scholar] [CrossRef]
- Jallali, I.; Megdiche, W.; M’Hamdi, B.; Oueslati, S.; Smaoui, A.; Abdelly, C.; Ksouri, R. Changes in Phenolic Composition and Antioxidant Activities of the Edible Halophyte Crithmum maritimum L. With Physiological Stage and Extraction Method. Acta Physiol. Plant 2012, 34, 1451–1459. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Magné, C. Antioxidant Activity and Phenol Content of Crithmum maritimum L. Leaves. Plant Physiol. Biochem. 2009, 47, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Quan, S.; Xiao, H. Towards Efficient Terpenoid Biosynthesis: Manipulating IPP and DMAPP Supply. Bioresour Bioprocess 2019, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Piatti, D.; Angeloni, S.; Caprioli, G.; Maggi, F.; Ricciutelli, M.; Arnoldi, L.; Sagratini, G. Sea Fennel (Crithmum maritimum L.): A Promising Biosaline Crop. Extraction, Purification and Chemical Characterization of Polar Extracts. Biol. Life Sci. Forum. 2021, 11, 61. [Google Scholar] [CrossRef]
- Piatti, D.; Angeloni, S.; Maggi, F.; Caprioli, G.; Ricciutelli, M.; Arnoldi, L.; Bosisio, S.; Mombelli, G.; Drenaggi, E.; Sagratini, G. Comprehensive Characterization of Phytochemicals in Edible Sea Fennel (Crithmum maritimum L., Apiaceae) Grown in Central Italy. J. Food Compost. Anal. 2023, 115, 104884. [Google Scholar] [CrossRef]
- Politeo, O.; Popović, M.; Veršić Bratinčević, M.; Kovačević, K.; Urlić, B.; Generalić Mekinić, I. Chemical Profiling of Sea Fennel (Crithmum maritimum L., Apiaceae) Essential Oils and Their Isolation Residual Waste-Waters. Plants 2023, 12, 214. [Google Scholar] [CrossRef]
- Alemán, A.; Marín, D.; Taladrid, D.; Montero, P.; Carmen Gómez-Guillén, M. Encapsulation of Antioxidant Sea Fennel (Crithmum maritimum) Aqueous and Ethanolic Extracts in Freeze-Dried Soy Phosphatidylcholine Liposomes. Food Res. Int. 2019, 119, 665–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, C.G.; Barreira, L.; da Rosa Neng, N.; Nogueira, J.M.F.; Marques, C.; Santos, T.F.; Varela, J.; Custódio, L. Searching for New Sources of Innovative Products for the Food Industry within Halophyte Aromatic Plants: In Vitro Antioxidant Activity and Phenolic and Mineral Contents of Infusions and Decoctions of Crithmum maritimum L. FCT 2017, 107, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Souid, A.; Della Croce, C.M.; Frassinetti, S.; Gabriele, M.; Pozzo, L.; Ciardi, M.; Abdelly, C.; Ben Hamed, K.; Magné, C.; Longo, V. Nutraceutical Potential of Leaf Hydro-Ethanolic Extract of the Edible Halophyte Crithmum maritimum L. Molecules 2021, 26, 5380. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.; et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Politeo, O.; Popović, M.; Veršić Bratinčević, M.; Koceić, P.; Ninčević Runjić, T.; Mekinić, I.G. Conventional vs. Microwave-Assisted Hydrodistillation: Influence on the Chemistry of Sea Fennel Essential Oil and Its By-Products. Plants 2023, 12, 1466. [Google Scholar] [CrossRef]
- Özcan, M.M.; Uslu, N.; Figueredo, G.; Al Juhaimi, F.; Ghafoor, K.; Babiker, E.E.; Alsawmahi, O.N.; Özcan, M.M.; Ahmed, M. The Effect of Fermentation Process on Bioactive Properties, Essential Oil Composition and Phenolic Constituents of Raw Fresh and Fermented Sea Fennel (Crithmum maritimum L.) Leaves. IJTK 2019, 18, 800–804. [Google Scholar]
- Souid, A.; Della Croce, C.M.; Pozzo, L.; Ciardi, M.; Giorgetti, L.; Gervasi, P.G.; Abdelly, C.; Magné, C.; Ben Hamed, K.; Longo, V. Antioxidant Properties and Hepatoprotective Effect of the Edible Halophyte Crithmum maritimum L. against Carbon Tetrachloride-Induced Liver Injury in Rats. Eur. Food Res. Technol. 2020, 246, 1393–1403. [Google Scholar] [CrossRef]
- Costa, C.; Padalino, L.; Spinelli, S.; Serio, F.; Del Nobile, M.A.; Conte, A. Study of the Efficacy of Two Extraction Techniques from Crithmum maritimum and Salicornia europaea. Food Nutr. Res. 2018, 6, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Sousa, G.; Alves, M.I.; Neves, M.; Tecelão, C.; Ferreira-dias, S. Enrichment of Sunflower Oil with Ultrasound-Assisted Extracted Bioactive Compounds from Crithmum maritimum L. Foods 2022, 11, 439. [Google Scholar] [CrossRef]
- Jallali, I.; Zaouali, Y.; Missaoui, I.; Smeoui, A.; Abdelly, C.; Ksouri, R. Variability of Antioxidant and Antibacterial Effects of Essential Oils and Acetonic Extracts of Two Edible Halophytes: Crithmum maritimum L. and Inula crithmoïdes L. Food Chem. 2014, 145, 1031–1038. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Pérez-Ramos, I.M.; Matías, L.; Moreira, X.; Francisco, M.; García-González, A.; Troncoso-Ponce, A.M.; Thomasset, B.; Martínez-Force, E.; Moreno-Pérez, A.J.; et al. Crithmum maritimum Seeds, a Potential Source for High-Quality Oil and Phenolic Compounds in Soils with No Agronomical Relevance. J. Food Compos. Aanal. 2022, 108, 104413. [Google Scholar] [CrossRef]
- Pasias, I.N.; Ntakoulas, D.D.; Raptopoulou, K.; Gardeli, C.; Proestos, C. Chemical Composition of Essential Oils of Aromatic and Medicinal Herbs Cultivated in Greece—Benefits and Drawbacks. Foods 2021, 10, 2354. [Google Scholar] [CrossRef]
- Maoloni, A.; Milanović, V.; Osimani, A.; Cardinali, F.; Garofalo, C.; Belleggia, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cirlini, M.; et al. Exploitation of Sea Fennel (Crithmum maritimum L.) for Manufacturing of Novel High-Value Fermented Preserves. Food Bioprod. Process. 2021, 127, 174–197. [Google Scholar] [CrossRef]
- Mugao, L.G.; Gichimu, B.M.; Muturi, P.W.; Mukono, S.T. Characterization of the Volatile Components of Essential Oils of Selected Plants in Kenya. Biochem. Res. Int. 2020, 2020, 8861798. [Google Scholar] [CrossRef]
- Fanouriou, E.; Kalivas, D.; Daferera, D.; Tarantilis, P.; Trigas, P.; Vahamidis, P.; Economou, G. Hippocratic Medicinal Flora on the Greek Island of Kos: Spatial Distribution, Assessment of Soil Conditions, Essential Oil Content and Chemotype Analysis. J. Appl. Res. Med. Aromat. Plants 2018, 9, 97–109. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Blažević, I.; Mudnić, I.; Burčul, F.; Grga, M.; Skroza, D.; Jerčić, I.; Ljubenkov, I.; Boban, M.; Miloš, M.; et al. Sea Fennel (Crithmum maritimum L.): Phytochemical Profile, Antioxidative, Cholinesterase Inhibitory and Vasodilatory Activity. J. Food Sci. Technol. 2016, 53, 3104–3112. [Google Scholar] [CrossRef] [Green Version]
- Houta, O.; Akrout, A.; Najja, H.; Neffati, M.; Amri, H. Chemical Composition, Antioxidant and Antimicrobial Activities of Essential Oil from Crithmum maritimum Cultivated in Tunisia. J. Essent. Oil-Bear. Plants 2015, 18, 1459–1466. [Google Scholar] [CrossRef]
- Ventura, Y.; Myrzabayeva, M.; Alikulov, Z.; Omarov, R.; Khozin-Goldberg, I.; Sagi, M. Effects of Salinity on Flowering, Morphology, Biomass Accumulation and Leaf Metabolites in an Edible Halophyte. AoB Plants 2014, 6, plu053. [Google Scholar] [CrossRef] [Green Version]
- Marongiu, B.; Maxia, A.; Piras, A.; Porcedda, S.; Tuveri, E.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Isolation of Crithmum maritimum L. Volatile Oil by Supercritical Carbon Dioxide Extraction and Biological Assays. Nat. Prod. Res. 2007, 21, 1145–1150. [Google Scholar] [CrossRef]
- Pavoni, L.; Maggi, F.; Mancianti, F.; Nardoni, S.; Ebani, V.V.; Cespi, M.; Bonacucina, G.; Palmieri, G.F. Microemulsions: An Effective Encapsulation Tool to Enhance the Antimicrobial Activity of Selected EOs. J. Drug Deliv. Sci. Technol. 2019, 53, 101101. [Google Scholar] [CrossRef]
- Campana, R.; Tiboni, M.; Maggi, F.; Cappellacci, L.; Cianfaglione, K.; Morshedloo, M.R.; Frangipani, E.; Casettari, L. Comparative Analysis of the Antimicrobial Activity of Essential Oils and Their Formulated Microemulsions against Foodborne Pathogens and Spoilage Bacteria. Antibiotics 2022, 11, 447. [Google Scholar] [CrossRef] [PubMed]
- Ngahang Kamte, S.L.; Ranjbarian, F.; Cianfaglione, K.; Sut, S.; Dall’Acqua, S.; Bruno, M.; Afshar, F.H.; Iannarelli, R.; Benelli, G.; Cappellacci, L.; et al. Identification of Highly Effective Antitrypanosomal Compounds in Essential Oils from the Apiaceae Family. Ecotoxicol. Environ. Saf. 2018, 156, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Kulisic-Bilusic, T.; Blažević, I.; Dejanović, B.; Miloš, M.; Pifat, G. Evaluation of the Antioxidant Activity of Essential Oils from Caper (Capparis spinosa) and Sea Fennel (Crithmum maritimum) by Different Methods. J. Food Biochem. 2010, 34, 286–302. [Google Scholar] [CrossRef]
- Beeby, E.; Magalhães, M.; Poças, J.; Collins, T.; Lemos, M.F.L.; Barros, L.; Ferreira, I.C.F.R.; Cabral, C.; Pires, I.M. Secondary Metabolites (Essential Oils) from Sand-Dune Plants Induce Cytotoxic Effects in Cancer Cells. J. Ethnopharmacol. 2020, 258, 112803. [Google Scholar] [CrossRef] [PubMed]
- Alves-Silva, J.M.; Guerra, I.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Figueirinha, A.; Salgueiro, L. Chemical Composition of Crithmum maritimum L. Essential Oil and Hydrodistillation Residual Water by GC-MS and HPLC-DAD-MS/MS, and Their Biological Activities. Ind. Crops Prod. 2020, 149, 112329. [Google Scholar] [CrossRef]
- Turan, F.; Kemal Sangun, M.; Ergenler, A. Chemical Composition of the Essential Oil of Sea Fennel Seed (Crithmum maritimum L.) from Turkey. J. Black Sea/Mediterr. Environ. 2020, 26, 17–25. [Google Scholar]
- Ge, J.; Du, S.; Yao, S.Q. Bifunctional Lipid-Derived Affinity-Based Probes (A FBPs) for Analysis of Lipid-Protein Interactome. Acc. Chem. Res. 2022, 55, 3663–3674. [Google Scholar] [CrossRef]
- Kuhalskaya, A.; Ahchige, M.W.; de Souza, L.P.; Vallarino, J.; Brotman, Y.; Alseekh, S. Network Analysis Provides Insight into Tomato Lipid Metabolism. Metabolites 2020, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Atia, A.; Debez, A.; Barhoumi, Z.; Abdelly, C.; Smaoui, A. Localization and Composition of Seed Oils of Crithmum maritimum L. (Apiaceae). Afr. J. Biotechnol. 2010, 9, 6482–6485. [Google Scholar]
- ben Hamed, K.; ben Youssef, N.; Ranieri, A.; Zarrouk, M.; Abdelly, C. Changes in Content and Fatty Acid Profiles of Total Lipids and Sulfolipids in the Halophyte Crithmum maritimum under Salt Stress. J. Plant Physiol. 2005, 162, 599–602. [Google Scholar] [CrossRef]
- ben Hamed, K.; Castagna, A.; Salem, E.; Ranieri, A.; Abdelly, C. Sea Fennel (Crithmum maritimum L.) under Salinity Conditions: A Comparison of Leaf and Root Antioxidant Responses. Plant Growth Regul. 2007, 53, 185–194. [Google Scholar] [CrossRef]
- Gómez Candela, C.; Bermejo López, L.M.; Loria Kohen, V. Importancia Del Equilibrio Del Índice Omega-6/Omega-3 En El Mantenimiento de Un Buen Estado de Salud. Recomendaciones Nutricionales. Nutr. Hosp. 2011, 26, 323–329. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acids: Biological Effects. World Rev. Nutr. Diet 2009, 99, 1–16. [Google Scholar] [CrossRef]
- Maoloni, A.; Pirker, T.; Pferschy-Wenzig, E.M.; Aquilanti, L.; Bauer, R. Characterization of Potentially Health-Promoting Constituents in Sea Fennel (Crithmum maritimum L.) Cultivated in the Conero Natural Park (Marche Region, Central Italy). Pharm. Biol. 2023. [Google Scholar]
- Masoodi, M.; Mir, A.A.; Petasis, N.A.; Serhan, C.N.; Nicolaou, A. Simultaneous Lipidomic Analysis of Three Families of Bioactive Lipid Mediators Leukotrienes, Resolvins, Protectins and Related Hydroxy-Fatty Acids by Liquid Chromatography/Electrospray Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 75. [Google Scholar] [CrossRef] [Green Version]
- Serag, A.; Baky, M.H.; Döll, S.; Farag, M.A. UHPLC-MS Metabolome Based Classification of Umbelliferous Fruit Taxa: A Prospect for Phyto-Equivalency of Its Different Accessions and in Response to Roasting. RSC Adv. 2019, 10, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; da Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet Food with Nutritional Health Benefits? J. Food Compost Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible Halophytes of the Mediterranean Basin: Potential Candidates for Novel Food Products. Trends. Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Lima, A.R.; Castañeda-Loaiza, V.; Salazar, M.; Nunes, C.; Quintas, C.; Gama, F.; Pestana, M.; Correia, P.J.; Santos, T.; Varela, J.; et al. Influence of Cultivation Salinity in the Nutritional Composition, Antioxidant Capacity and Microbial Quality of Salicornia ramosissima Commercially Produced in Soilless Systems. Food Chem. 2020, 333, 127525. [Google Scholar] [CrossRef]
- Castañeda-Loaiza, V.; Oliveira, M.; Santos, T.; Schüler, L.; Lima, A.R.; Gama, F.; Salazar, M.; Neng, N.R.; Nogueira, J.M.F.; Varela, J.; et al. Wild vs Cultivated Halophytes: Nutritional and Functional Differences. Food Chem. 2020, 333, 127536. [Google Scholar] [CrossRef]
- Nartea, A.; Fanesi, B.; Falcone, P.M.; Pacetti, D.; Frega, N.G.; Lucci, P. Impact of Mild Oven Cooking Treatments on Carotenoids and Tocopherols of Cheddar and Depurple Cauliflower (Brassica oleracea L. Var. Botrytis). Antioxidants 2021, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Guil-Guerrero, J.L.; Rodríguez-García, I. Lipids Classes, Fatty Acids and Carotenes of the Leaves of Six Edible Wild Plants. Eur. Food Res. Technol. 1999, 209, 313–316. [Google Scholar] [CrossRef]
- Gómez-Bellot, M.J.; Lorente, B.; Ortuño, M.F.; Medina, S.; Gil-Izquierdo, Á.; Bañón, S.; Sánchez-Blanco, M.J. Recycled Wastewater and Reverse Osmosis Brine Use for Halophytes Irrigation: Differences in Physiological, Nutritional and Hormonal Responses of Crithmum maritimum and Atriplex halimus Plants. Agronomy 2021, 11, 627. [Google Scholar] [CrossRef]
- Romojaro, A.; Botella, M.Á.; Obón, C.; Pretel, M.T. Nutritional and Antioxidant Properties of Wild Edible Plants and Their Use as Potential Ingredients in the Modern Diet. Int. J. Food Sci. Nutr. 2013, 64, 944–952. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T. Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview. Food Prod. Process. Nutr. 2020, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J. Global Sodium Consumption and Death from Cardiovascular Causes. NEJM 2014, 371, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Meot-Duros, L.; Le Floch, G.; Magné, C. Radical Scavenging, Antioxidant and Antimicrobial Activities of Halophytic Species. J. Ethnopharmacol. 2008, 116, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Meot-Duros, L.; Cérantola, S.; Talarmin, H.; le Meur, C.; le Floch, G.; Magné, C. New Antibacterial and Cytotoxic Activities of Falcarindiol Isolated in Crithmum maritimum L. Leaf Extract. FCT 2010, 48, 553–557. [Google Scholar] [CrossRef]
- Pedreiro, S.; Figueirinha, A.; Cavaleiro, C.; Cardoso, O.; Donato, M.M.; Salgueiro, L.; Ramos, F. Exploiting the Crithmum maritimum L. Aqueous Extracts and Essential Oil as Potential Preservatives in Food, Feed, Pharmaceutical and Cosmetic Industries. Antioxidants 2023, 12, 252. [Google Scholar] [CrossRef]
- Zhang, B.; Deng, Z.; Ramdath, D.D.; Tang, Y.; Chen, P.X.; Liu, R.; Liu, Q.; Tsao, R. Phenolic Profiles of 20 Canadian Lentil Cultivars and Their Contribution to Antioxidant Activity and Inhibitory Effects on α-Glucosidase and Pancreatic Lipase. Food Chem. 2015, 172, 862–872. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, S.K.; Wang, H.; Cai, M. In Vitro Antioxidant Activity of Extracts from Common Legumes. Food Chem 2014, 152, 462–466. [Google Scholar] [CrossRef]
- Ailén, A.; Marín-Peñalver, D.; de Palencia, P.F.; Gómez-Guillén, M.D.C.; García, P.M. Anti-Inflammatory Properties, Bioaccessibility and Intestinal Absorption of Sea Fennel (Crithmum maritimum) Extract Encapsulated in Soy Phosphatidylcholine Liposomes. Nutrients 2022, 14, 210. [Google Scholar] [CrossRef]
- Ben Othman, M.; Neffati, M.; Isoda, H. Evaluation of the Anti-Stress Effects of Five Tunisian Aromatic and Medicinal Plants in Vitro. J. Herb. Med. 2021, 27, 100238. [Google Scholar] [CrossRef]
- Chen, C.Y.; Liu, C.M.; Yeh, H.C.; Wu, H.M.; Li, W.J.; Li, H.T. Flavonoids of Crithmum maritimum. Chem. Nat. Compd. 2021, 57, 917–920. [Google Scholar] [CrossRef]
- Nartea, A.; Lucci, P.; Loizzo, M.R.; Tundis, R.; Leporini, M.; Gervasi, L.; Fanesi, B.; Núñez, O.; Frega, N.G.; Fiorini, D.; et al. Is Coffee Powder Extract a Possible Functional Ingredient Useful in Food and Nutraceutical Industries? Ital. J. Food Sci. 2022, 34, 140–148. [Google Scholar] [CrossRef]
- Gnocchi, D.; Sabbà, C.; Mazzocca, A. The Edible Plant Crithmum maritimum Shows Nutraceutical Properties by Targeting Energy Metabolism in Hepatic Cancer. Plant Foods Hum. Nutr. 2022, 77, 481–483. [Google Scholar] [CrossRef]
- Özcan, M. The Use of Yogurt as Starter in Rock Samphire (Crithmum maritimum L.) Fermentation. Eur. Food Res. Technol. 2000, 210, 424–426. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M. The Use of the Sea Fennel as a New Spice-Colorant in Culinary Preparations. Int. J. Gastron. Food Sci. 2012, 1, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Zaika, L.L.; Kissinger, J.C.; Wasserman, A.E. Inhibition of Lactic Acid Bacteria by Herbs. J. Food Sci. 1983, 48, 1455–1459. [Google Scholar] [CrossRef]
- Research and Markets Global Sardine Market (2021 to 2026)-Industry Trends, Share, Size, Growth, Opportunity and Forecasts. Available online: https://www.globenewswire.com/en/news-release/2022/01/27/2374217/28124/en/Global-Sardine-Market-2021-to-2026-Industry-Trends-Share-Size-Growth-Opportunity-and-Forecasts.html (accessed on 9 January 2023).
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of Vegetables and Fruits through Lactic Acid Fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef]
- Maoloni, A.; Cardinali, F.; Milanović, V.; Garofalo, C.; Osimani, A.; Mozzon, M.; Aquilanti, L. Microbiological Safety and Stability of Novel Green Sauces Made with Sea Fennel (Crithmum maritimum L.). Food Res. Int. 2022, 157, 111463. [Google Scholar] [CrossRef] [PubMed]
- Maoloni, A.; Cardinali, F.; Milanović, V.; Osimani, A.; Verdenelli, M.C.; Coman, M.M.; Aquilanti, L. Exploratory Study for Probiotic Enrichment of a Sea Fennel (Crithmum maritimum L.) Preserve in Brine. Foods 2022, 11, 2219. [Google Scholar] [CrossRef] [PubMed]
- Lillo-Pérez, S.; Guerra-Valle, M.; Orellana-Palma, P.; Petzold, G. Probiotics in Fruit and Vegetable Matrices: Opportunities for Nondairy Consumers. LWT 2021, 151, 112106. [Google Scholar] [CrossRef]
- Maoloni, A.; Cardinali, F.; Milanović, V.; Osimani, A.; Garofalo, C.; Ferrocino, I.; Corvaglia, M.R.; Cocolin, L.; Aquilanti, L. Microbial Dynamics and Key Sensory Traits of Laboratory-Scale Co-Fermented Green Olives (Olea europaea L. Cv. Ascolana Tenera) and Sea Fennel (Crithmum maritimum L.). Food BioSci. 2022, 50, 102077. [Google Scholar] [CrossRef]
- Santos, D.; Lopes da Silva, J.A.; Pintado, M. Fruit and Vegetable By-Products’ Flours as Ingredients: A Review on Production Process, Health Benefits and Technological Functionalities. LWT 2022, 154, 112707. [Google Scholar] [CrossRef]
- Esposito, F.; Arlotti, G.; Bonifati, A.M.; Napolitano, A.; Vitale, D.; Fogliano, V. Antioxidant Activity and Dietary Fibre in Durum Wheat Bran By-Products. Food Res. Int. 2005, 38, 1167–1173. [Google Scholar] [CrossRef]
- Renna, M.; Gonnella, M.; Caretto, S.; Mita, G.; Serio, F. Sea Fennel (Crithmum maritimum L.): From Underutilized Crop to New Dried Product for Food Use. Genet. Resour. Crop Evol. 2017, 64, 205–216. [Google Scholar] [CrossRef]
- Nartea, A.; Fanesi, B.; Pacetti, D.; Lenti, L.; Fiorini, D.; Lucci, P.; Frega, N.G.; Falcone, P.M. Cauliflower By-Products as Functional Ingredient in Bakery Foods: Fortification of Pizza with Glucosinolates, Carotenoids and Phytosterols. Curr. Res. Food Sci. 2023, 6, 100437. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A Review of Drying Methods for Improving the Quality of Dried Herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef]
- Giungato, P.; Renna, M.; Rana, R.; Licen, S.; Barbieri, P. Characterization of Dried and Freeze-Dried Sea Fennel (Crithmum maritimum L.) Samples with Headspace Gas-Chromatography/Mass Spectrometry and Evaluation of an Electronic Nose Discrimination Potential. Food Res. Int. 2019, 115, 65–72. [Google Scholar] [CrossRef]
- Siracusa, L.; Kulisic-Bilusic, T.; Politeo, O.; Krause, I.; Dejanovic, B.; Ruberto, G. Phenolic Composition and Antioxidant Activity of Aqueous Infusions from Capparis spinosa L. and Crithmum maritimum L. before and after Submission to a Two-Step in Vitro Digestion Model. J. Agric. Food Chem. 2011, 59, 12453–12459. [Google Scholar] [CrossRef]
- Herrera, T.; Aguilera, Y.; Rebollo-Hernanz, M.; Bravo, E.; Benítez, V.; Martínez-Sáez, N.; Arribas, S.M.; del Castillo, M.D.; Martín-Cabrejas, M.A. Teas and Herbal Infusions as Sources of Melatonin and Other Bioactive Non-Nutrient Components. LWT 2018, 89, 65–73. [Google Scholar] [CrossRef]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef]
- Sangnim, T.; Sriamornsak, P.; Singh, I.; Huanbutta, K. Swallowing Gel for Patients with Dysphagia: A Novel Application of Chitosan. Gels 2021, 7, 108. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Andrade, M.; Sanches-Silva, A.; de Melo, N.R. Essential Oils for Food Application: Natural Substances with Established Biological Activities. Food Bioprocess Technol. 2018, 11, 43–71. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential Oils: From Extraction to Encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Ortan, A.; Fierascu, I.C.; Fierascu, I. In Vitro and in Vivo Evaluation of Antioxidant Properties of Wild-Growing Plants. A Short Review. Curr. Opin. Food Sci. 2018, 24, 1–8. [Google Scholar] [CrossRef]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal Halophytes: Potent Source of Health Promoting Biomolecules with Medical, Nutraceutical and Food Applications. Crit. Rev. BioTechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Nieto, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. Bioactive Compounds from Fruits as Preservatives. Foods 2023, 12, 343. [Google Scholar] [CrossRef]
- Ben Akacha, B.; Švarc-Gajić, J.; Elhadef, K.; Ben Saad, R.; Brini, F.; Mnif, W.; Smaoui, S.; Ben Hsouna, A. The Essential Oil of Tunisian Halophyte Lobularia maritima: A Natural Food Preservative Agent of Ground Beef Meat. Life 2022, 12, 1571. [Google Scholar] [CrossRef]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Kraśniewska, K. Novel Materials in the Preparation of Edible Films and Coatings—A Review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making Sense of the “Clean Label” Trends: A Review of Consumer Food Choice Behavior and Discussion of Industry Implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Petretto, G.; Foddai, M.; Maldini, M.T.; Chessa, M.; Venditti, T.; D’Hallewin, G.; Pintore, G. A Novel Device for the Study of Antimicrobial Activity by Vapor-Contact of Volatile Substances on Food Products. Commun. Agric. Appl. Biol. Sci. 2013, 78, 65–72. [Google Scholar] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant Activity of Selected Essential Oil Components in Two Lipid Model Systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The Use of Food By-Products as a Novel for Functional Foods: Their Use as Ingredients and for the Encapsulation Process. Trends. Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Rico, D.; Albertos, I.; Martinez-Alvarez, O.; Elvira Lopez-Caballero, M.; Martin-Diana, A.B. Use of Sea Fennel as a Natural Ingredient of Edible Films for Extending the Shelf Life of Fresh Fish Burgers. Molecules 2020, 25, 5260. [Google Scholar] [CrossRef]
Analyzed Sample | SFA (%) | MUFA (%) | PUFA (%) | ω6/ω3 | Reference |
---|---|---|---|---|---|
Leaves | 23.8–31.2 | 7.8–8.7 | 62.5–68.0 | 1.1–1.4 | [51] |
21.0–22.4–21.4 | 8.3–7.4–8.1 | 70.6–71.8–70.7 | 0.9–1.1–1.0 | [39] | |
11.8–13.8 | 2.2–2.5 | 83.1–86.0 | 1.1–1.2 | [14] | |
14.1 | 1.7 | 84.2 | 1.3 | ||
13.3 | 2.4 | 84.3 | 1.4 | ||
23.9–35.3 | 15.6–22.0 | 55.0–60.4 | 0.8–0.9 | [7] | |
20.5–24.4 | 7.1–19.9 | 33.8–59.4 | 0.1–0.9 | ||
28.2–30.1 | 4.3–25.4 | 46.4–64.0 | 0.8–1.1 | [9] | |
24 | 18.9 | 57 | 0.8 | ||
24.8–29.2 | 7.3–7.8 | 63.6–67.5 | 1.5 | [34] | |
22.3–27.9 | 5.8–9.7 | 62.3–71.9 | 1.1–1.6 | ||
26.0 | 32.0 | 42.0 | N/A | [2] | |
Stems | 27.6 | 2.7 | 72.7 | 1.1 | [6] |
Seeds oil | 10.8–16.2 | 72.2–77.8 | 11.5–11.8 | N/A | [32] |
5.5 | 78.8 | 15.7 | N/A | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraouia, M.; Nartea, A.; Maoloni, A.; Osimani, A.; Garofalo, C.; Fanesi, B.; Ismaiel, L.; Aquilanti, L.; Pacetti, D. Sea Fennel (Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules 2023, 28, 4741. https://doi.org/10.3390/molecules28124741
Kraouia M, Nartea A, Maoloni A, Osimani A, Garofalo C, Fanesi B, Ismaiel L, Aquilanti L, Pacetti D. Sea Fennel (Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules. 2023; 28(12):4741. https://doi.org/10.3390/molecules28124741
Chicago/Turabian StyleKraouia, Maryem, Ancuta Nartea, Antonietta Maoloni, Andrea Osimani, Cristiana Garofalo, Benedetta Fanesi, Lama Ismaiel, Lucia Aquilanti, and Deborah Pacetti. 2023. "Sea Fennel (Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals" Molecules 28, no. 12: 4741. https://doi.org/10.3390/molecules28124741
APA StyleKraouia, M., Nartea, A., Maoloni, A., Osimani, A., Garofalo, C., Fanesi, B., Ismaiel, L., Aquilanti, L., & Pacetti, D. (2023). Sea Fennel (Crithmum maritimum L.) as an Emerging Crop for the Manufacturing of Innovative Foods and Nutraceuticals. Molecules, 28(12), 4741. https://doi.org/10.3390/molecules28124741