Chlorahololide D, a Lindenane-Type Sesquiterpenoid Dimer from Chloranthus holostegius Suppressing Breast Cancer Progression
Abstract
:1. Introduction
2. Results
2.1. Chlorahololide D Inhibited Cancer Cell Growth In Vitro
2.2. Chlorahololide D Induced Apoptosis of MCF-7 Cells
2.3. Chlorahololide D Increased Cellular ROS
2.4. Chlorahololide D Arrested MCF-7 Cell Cycle
2.5. Chlorahololide D Affected the Expression of Apoptosis-Related Proteins
2.6. Chlorahololide D Inhibited MCF-7 Cell Metastasis by Regulating FAK Signaling Pathway
2.7. In Vivo Antitumor Activity of Chlorahololide D Using a Zebrafish Model
2.8. Antiangiogenetic Activity of Chlorahololide D Using a Transgenic Zebrafish Model
3. Materials and Methods
3.1. Biological Materials and Cell Culture
3.2. Extraction, Isolation, and Purification
3.3. Cytotoxic Activity Assay
3.4. Apoptosis Analysis by Flow Cytometry
3.5. Measurement of Reactive Oxygen Species (ROS)
3.6. Cell Cycle Analysis
3.7. Western Blotting Analysis
3.8. Wound-Scratch Assay
3.9. In Vivo Anti-Tumor Assay
3.10. Antiangiogenetic Assay Using Transgenic Zebrafish Model
3.11. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Bashar, M.D.A.; Begam, N. Breast cancer surpasses lung cancer as the most commonly diagnosed cancer worldwide. Indian J. Cancer 2022, 59, 3. [Google Scholar] [CrossRef]
- IARC Biennial Report 2020–2021; International Agency for Research on Cancer: Lyon, France, 2022.
- Estimated Number of New Cases/Death in 2020, Worldwide, Females, All Ages; Globocan 2020; International Agency for Research on Cancer: Lyon, France, 2022.
- Ciuba, A.; Wnuk, K.; Nitsch-Osuch, A.; Kulpa, M. Health care accessibility and breast cancer mortality in Europe. Int. J. Environ. Res. Public Health 2022, 19, 13605. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Seo, E.; Kim, S.; Lee, H.; Lee, H.; Jang, Y.; Kim, Y.M.; Kim, Y.; Lee, J.; Ye, S. Pharmacological anti-tumor effects of natural Chamaecyparis obtusa (siebold & zucc.) endl. Leaf extracts on breast cancer. J. Ethnopharmacol. 2023, 313, 116598. [Google Scholar] [PubMed]
- Liu, X.; Chang, Y.; Wang, X.; Wang, Y.; Ren, X.; Ma, J.; Yu, A.X.; Wei, J.; Fan, Q.; Dong, Y.; et al. An integrated approach to uncover anti-tumor active materials of Curcumae Rhizoma-Sparganii Rhizoma based on spectrum-effect relationship, molecular docking, and ADME evaluation. J. Ethnopharmacol. 2021, 280, 114439. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Huang, S.; Zhang, H.; Deng, C.; Song, X.; Zhang, D.; Wang, W. Genus Chloranthus: A comprehensive review of its phytochemistry, pharmacology, and uses. Arab. J. Chem. 2022, 15, 104260. [Google Scholar] [CrossRef]
- Wang, A.; Song, H.; An, H.; Huang, Q.; Luo, X.; Dong, J. Secondary metabolites of plants from the genus chloranthus: Chemistry and biological activities. Chem. Biodivers. 2015, 12, 451–473. [Google Scholar] [CrossRef]
- Chi, J.; Xu, W.; Wei, S.; Wang, X.; Li, J.; Gao, H.; Kong, L.; Luo, J. Chlotrichenes A and B, two lindenane sesquiterpene dimers with highly fused carbon skeletons from Chloranthus holostegius. Org. Lett. 2019, 21, 789–792. [Google Scholar] [CrossRef]
- Yang, S.; Gao, Z.; Wu, Y.; Hu, G.; Yue, J. Chlorahololides C–F: A new class of potent and selective potassium channel blockers from Chloranthus holostegius. Tetrahedron 2008, 64, 2027–2034. [Google Scholar] [CrossRef]
- Li, J.; Chi, J.; Tang, P.; Sun, Y.; Lu, W.; Xu, W.; Wang, Y.; Luo, J.; Kong, L. Spirolindemers A and B, lindenane sesquiterpenoid oligomers equipped with oxaspiro[4.5]decane from Chloranthus henryi. Chin. J. Chem. 2022, 40, 603–608. [Google Scholar] [CrossRef]
- Kawabata, J.; Fukushi, E.; Mizutani, J. Sesquiterpene dimers from Chloranthus japonicus. Phytochemistry 1995, 39, 121–125. [Google Scholar] [CrossRef]
- Wang, P.; Luo, J.; Zhang, Y.; Kong, L. Sesquiterpene dimers esterified with diverse small organic acids from the seeds of Sarcandra glabra. Tetrahedron 2015, 71, 5362–5370. [Google Scholar] [CrossRef]
- Yang, S.; Gao, Z.; Wang, F.; Liao, S.; Chen, H.; Zhang, C.; Hu, G.; Yue, J. Chlorahololides A and B, two potent and selective blockers of the potassium channel isolated from Chloranthus holostegius. Org. Lett. 2007, 9, 903–906. [Google Scholar] [CrossRef]
- Yan, H.; Ba, M.; Li, X.; Guo, J.; Qin, X.; He, L.; Zhang, Z.; Guo, Y.; Liu, H. Lindenane sesquiterpenoid dimers from Chloranthus japonicus inhibit HIV-1 and HCV replication. Fitoterapia 2016, 115, 64–68. [Google Scholar] [CrossRef]
- Zhou, B.; Wu, Y.; Dalal, S.; Merino, E.F.; Liu, Q.; Xu, C.; Yuan, T.; Ding, J.; Kingston, D.G.I.; Cassera, M.B.; et al. Nanomolar antimalarial agents against chloroquine-resistant plasmodium falciparum from medicinal plants and their structure–activity relationships. J. Nat. Prod. 2017, 80, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, D.; Luo, Y.; Yu, S.; Li, Y.; Lu, Y. Bis-sesquiterpenes and diterpenes from Chloranthus henryi. Phytochemistry 2008, 69, 2867–2874. [Google Scholar] [CrossRef]
- Du, B.; Huang, Z.; Wang, X.; Chen, T.; Shen, G.; Fu, S.; Liu, B. A unified strategy toward total syntheses of lindenane sesquiterpenoid [4 + 2] dimers. Nat. Commun. 2019, 10, 1892. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fu, S.; Zhou, C. Naturally occurring [4 + 2] type terpenoid dimers: Sources, bioactivities and total syntheses. Nat. Prod. Rep. 2020, 37, 1627–1660. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Yin, S.; Ji, Y.; Su, Z.; Geng, M.; Yue, J. Sesquiterpenes and dimeric sesquiterpenoids from Sarcandra glabra. J. Nat. Prod. 2010, 73, 45–50. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, X.; Li, Y.; Li, Y.; Zhang, H.; Song, Z.; Xu, J.; Guo, Y. A natural xanthone suppresses lung cancer growth and metastasis by targeting STAT3 and FAK signaling pathways. Phytomedicine 2022, 102, 154118. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Liu, W.; Hou, J.; Xu, J.; Guo, Y.; Hu, P. Cratoxylumxanthone C, a natural xanthone, inhibits lung cancer proliferation and metastasis by regulating STAT3 and FAK signal pathways. Front. Pharmacol. 2022, 13, 920422. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Li, Y.; Wang, H.; Zhang, S.; Reid, A.; Lall, N.; Zhang, J.; Wang, C.; Lee, D.; et al. Cytotoxic and antiangiogenetic xanthones inhibiting tumor proliferation and metastasis from Garcinia xipshuanbannaensis. J. Nat. Prod. 2021, 84, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res. 2000, 256, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Rubin, L.L.; Philpott, K.L.; Brooks, S.F. The cell cycle and cell death. Curr. Biol. 1993, 3, 391–394. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Takada, K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Li, J.G.X.; Darzynkiewicz, Z. Different patterns of apoptosis of HL-60 cells induced by cycloheximide and camptothecin. J. Cell. Physiol. 1993, 157, 263–270. [Google Scholar] [CrossRef]
- Gorczyca, W.; Gong, J.; Ardelt, B.; Darzynkiewicz, Z. The cell cycle related differences in susceptibility of HL60 Cells to apoptosis induced by various antitumor agents1. Cancer Res. 1993, 53, 3186–3192. [Google Scholar]
- Li, Y.; Liu, Y.; Li, Y.; Liu, F.; Zhao, Y.; Xu, J.; Guo, Y. Trigothysoid N inhibits tumor proliferation and migration by targeting mitochondria and the STAT3/FAK pathway. Arab. J. Chem. 2023, 16, 104930. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, Q.; Yang, X.; Li, Y.; Zhang, X.; Li, Y.; Du, Q.; Jin, D.-Q.; Cui, J.; Lall, N.; et al. Diterpenoids from the leaves of Casearia kurzii showing cytotoxic activities. Bioorg. Chem. 2020, 98, 103741. [Google Scholar] [CrossRef]
- Wang, F.; Wu, P.; Qin, S.; Deng, Y.; Han, P.; Li, X.; Fan, C.; Xu, Y. Curcin C inhibit osteosarcoma cell line U2OS proliferation by ROS induced apoptosis, autophagy and cell cycle arrest through activating JNK signal pathway. Int. J. Biol. Macromol. 2022, 195, 433–439. [Google Scholar] [CrossRef]
- Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell. Bio. 2019, 20, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Guan, J. Role of focal adhesion kinase in integrin signaling. Int. J. Biochem. Cell Biol. 1997, 29, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Teng, J.; Ding, N.; He, M.; Sun, Y.; Yu, A.C.; Chen, J. FAAP, a novel murine protein, is involved in cell adhesion through regulating vinculin-paxillin association. Front. Biosci. 2008, 13, 7123–7131. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Fang, B.; Thuy, N.T.T.; Li, A.; Yoo, H.M.; Zheng, X.; Cho, N. Narciclasine suppresses esophageal cancer cell proliferation and migration by inhibiting the FAK signaling pathway. Eur. J. Pharmacol. 2022, 921, 174669. [Google Scholar] [CrossRef] [PubMed]
- McMahon, G. VEGF receptor signaling in tumor angiogenesis. Oncologist 2000, 5 (Suppl. 1), 3–10. [Google Scholar] [CrossRef]
- Yang, X.; Tanaka, N.; Tsuji, D.; Lu, F.; Yan, X.; Itoh, K.; Li, D.; Kashiwada, Y. Sarcaglabrin A, a conjugate of C15 and C10 terpenes from the aerial parts of Sarcandra glabra. Tetrahedron Lett. 2020, 61, 151916. [Google Scholar] [CrossRef]
Compound | IC50 (μM) | |
---|---|---|
HepG2 | MCF-7 | |
Chlorahololide D | 13.7 ± 1.4 | 6.7 ± 1.0 |
Sarcandrolide A | 40.6 ± 1.2 | 23.0 ± 3.3 |
Shizukaol E | 34.8 ± 4.4 | >60 |
Etoposide a | 15.7 ± 1.6 | 33.3 ± 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, W.; Xu, J.; Guo, Y. Chlorahololide D, a Lindenane-Type Sesquiterpenoid Dimer from Chloranthus holostegius Suppressing Breast Cancer Progression. Molecules 2023, 28, 7070. https://doi.org/10.3390/molecules28207070
Li Y, Liu W, Xu J, Guo Y. Chlorahololide D, a Lindenane-Type Sesquiterpenoid Dimer from Chloranthus holostegius Suppressing Breast Cancer Progression. Molecules. 2023; 28(20):7070. https://doi.org/10.3390/molecules28207070
Chicago/Turabian StyleLi, Ying, Wenhui Liu, Jing Xu, and Yuanqiang Guo. 2023. "Chlorahololide D, a Lindenane-Type Sesquiterpenoid Dimer from Chloranthus holostegius Suppressing Breast Cancer Progression" Molecules 28, no. 20: 7070. https://doi.org/10.3390/molecules28207070
APA StyleLi, Y., Liu, W., Xu, J., & Guo, Y. (2023). Chlorahololide D, a Lindenane-Type Sesquiterpenoid Dimer from Chloranthus holostegius Suppressing Breast Cancer Progression. Molecules, 28(20), 7070. https://doi.org/10.3390/molecules28207070