Pyrolysis Kinetics of Lignin-Based Flame Retardants Containing MOFs Structure for Epoxy Resins
Abstract
:1. Introduction
2. Results
2.1. Thermogravimetric Analysis
2.2. Kinetic Analysis
2.3. Mechanic Equations
2.4. Compensation Effect
3. Experiments
3.1. Materials
3.2. Phenolation of Alkaline Lignin(Ph-Lignin)
3.3. Preparation of MEL and DOPO Mixture(MEL-DOPO)
3.4. Preparation of PN-Lignin
3.5. Preparation of PN-Lignin@HKUST-1
3.6. Preparation of Flame-Retardant EP Composites
3.7. Measurements
3.8. Kinetic Modeling
4. Conclusions
- Four kinetic methods were used to determine the activation energies of the Al-lignin and EP/15% F-lignin@HKUST-1 samples. The four procedures were reasonable since they produced outcomes that were almost identical. Al-lignin pyrolysis has a wide range of apparent activation energies and can be separated into three stages. The complexity of the pyrolysis process is reflected in the multiple increases and drops in the apparent activation energy of al-lignin pyrolysis. The change of apparent activation energy during pyrolysis of EP/15% F-lignin@HKUST-1 samples can also be divided into three stages, but different from lignin, the apparent activation energy during pyrolysis of these two samples experienced three stages: rapid increase, slow change, and rapid rise, reflecting that their pyrolysis-rate curves only have a single obvious rate peak.
- Using universal integral and differential equation approaches, the most likely mechanism functions for the pyrolysis of Al-lignin and EP/15% F-lignin@HKUST-1 were identified as AE6, AE4, and AE3. The regression-intercept of the Kissinger-SY and Ozawa-SY iterative approaches were used to get the relevant preexponential component lnA, and the related apparent activation energy Eα had a strong linear relationship.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kumar, S.; Krishnan, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: A review. Ind. Eng. Chem. Res. 2018, 57, 2711–2726. [Google Scholar] [CrossRef]
- Wang, X.; Guo, W.; Song, L.; Hu, Y. Intrinsically flame retardant bio-based epoxy thermosets: A review. Compos. Part B Eng. 2019, 179, 107487. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Y.; Gao, S.; Yang, X.; Fan, R.; Zhi, M.; Fu, M. Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106539. [Google Scholar] [CrossRef]
- Luo, H.; Rao, W.; Zhao, P.; Wang, L.; Liu, Y.; Yu, C. An efficient organic/inorganic phosphorus–nitrogen–silicon flame retardant towards low-flammability epoxy resin. Polym. Degrad. Stab. 2020, 178, 109195. [Google Scholar] [CrossRef]
- Fang, F.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Compos. Part B Eng. 2019, 165, 406–416. [Google Scholar] [CrossRef]
- Wang, S.; Bai, J.; Innocent, M.T.; Wang, Q.; Xiang, H.; Tang, J.; Zhu, M. Lignin-based carbon fibers: Formation, modification and potential applications. Green Energy Environ. 2021, 7, 578–605. [Google Scholar] [CrossRef]
- Liu, M.; Aravind, P. The fate of tars under solid oxide fuel cell conditions: A review. Appl. Therm. Eng. 2014, 70, 687–693. [Google Scholar] [CrossRef]
- Liao, J.J.; Abd Latif, N.H.; Trache, D.; Brosse, N.; Hussin, M.H. Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol. 2020, 162, 985–1024. [Google Scholar] [CrossRef]
- Galkin, M.V.; Samec, J.S. Lignin valorization through catalytic lignocellulose fractionation: A fundamental platform for the future biorefinery. ChemSusChem 2016, 9, 1544–1558. [Google Scholar] [CrossRef]
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yu, B.; Xu, X.; Bourbigot, S.; Wang, H.; Song, P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Wu, Q.; Ran, F.; Dai, L.; Li, C.; Li, R.; Si, C. A functional lignin-based nanofiller for flame-retardant blend. Int. J. Biol. Macromol. 2021, 190, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Zhu, X.; Dai, P.; Lu, X.; Guo, H.; Que, H.; Wang, D.; He, T.; Xu, C.; Robin, H.M. Preparation of a novel lignin-based flame retardant for epoxy resin. Mater. Chem. Phys. 2021, 259, 124101. [Google Scholar] [CrossRef]
- Dai, P.; Liang, M.; Ma, X.; Luo, Y.; He, M.; Gu, X.; Gu, Q.; Hussain, I.; Luo, Z. Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin. ACS Omega 2020, 5, 32084–32093. [Google Scholar] [CrossRef]
- Chen, S.; Lin, S.; Hu, Y.; Ma, M.; Shi, Y.; Liu, J.; Zhu, F.; Wang, X. A lignin—Based flame retardant for improving fire behavior and biodegradation performance of polybutylene succinate. Polym. Adv. Technol. 2018, 29, 3142–3150. [Google Scholar] [CrossRef]
- Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaun, F.; Malucelli, G.; Guan, J. Thermal stability and fire retardant properties of polyamide 11 microcomposites containing different lignins. Ind. Eng. Chem. Res. 2017, 56, 13704–13714. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, J.; Zhang, W.; Pan, Y.-T.; Wang, D.-Y.; Yang, R. Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chem. Eng. J. 2020, 381, 122777. [Google Scholar] [CrossRef]
- Xu, W.; Wang, X.; Wu, Y.; Li, W.; Chen, C. Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 2019, 363, 138–151. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. Preparation of metal–organic frameworks and their application as flame retardants for polystyrene. Ind. Eng. Chem. Res. 2017, 56, 2036–2045. [Google Scholar] [CrossRef]
- Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. A novel CoSII)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy. Compos. Sci. Technol. 2017, 152, 231–242. [Google Scholar] [CrossRef]
- Liao, S.-H.; Liu, P.-L.; Hsiao, M.-C.; Teng, C.-C.; Wang, C.-A.; Ger, M.-D.; Chiang, C.-L. One-step reduction and functionalization of graphene oxide with phosphorus-based compound to produce flame-retardant epoxy nanocomposite. Ind. Eng. Chem. Res. 2012, 51, 4573–4581. [Google Scholar] [CrossRef]
- Ounas, A.; Aboulkas, A.; Bacaoui, A.; Yaacoubi, A. Pyrolysis of olive residue and sugar cane bagasse: Non-isothermal thermogravimetric kinetic analysis. Bioresour. Technol. 2011, 102, 11234–11238. [Google Scholar] [CrossRef] [PubMed]
Samples | Td5% (°C) | Tdmax (°C) | Residues (wt.%) |
---|---|---|---|
EP | 333.7 | 405.3 | 16.21 |
Al-lignin | 105.5 | 333.3 | 41.57 |
EP/15%F-lignin@HKUST-1 | 334.1 | 360.7 | 20.14 |
α | Kissiger-SY Iteration | Ozawa-SY Iteration | Lee-Beck Iteration | Gorbatchev Iteration | ||||
---|---|---|---|---|---|---|---|---|
E/(KJ/mol) | R2 | E/(KJ/mol) | R2 | E/(KJ/mol) | R2 | E/(KJ/mol) | R2 | |
0.15 | 57.61 | 0.92 | 57.61 | 0.93 | 57.67 | 0.92 | 57.67 | 0.92 |
0.20 | 92.19 | 0.96 | 92.19 | 0.97 | 92.22 | 0.96 | 92.22 | 0.96 |
0.25 | 112.61 | 0.98 | 112.62 | 0.99 | 112.64 | 0.98 | 112.64 | 0.98 |
0.30 | 122.64 | 0.99 | 122.64 | 0.99 | 122.67 | 0.99. | 122.67 | 0.99 |
0.35 | 126.60 | 0.99 | 126.60 | 0.99 | 126.62 | 0.99 | 126.62 | 0.99 |
0.40 | 127.89 | 0.99 | 127.89 | 0.99 | 127.92 | 0.99 | 127.92 | 0.99 |
0.45 | 127.73 | 0.99 | 127.73 | 0.99 | 127.76 | 0.99 | 127.76 | 0.99 |
0.50 | 123.28 | 0.99 | 123.28 | 0.99 | 123..31 | 0.99 | 123.31 | 0.99 |
0.55 | 111.54 | 0.99 | 111.54 | 0.99 | 111.58 | 0.99 | 111.58 | 0.99 |
0.60 | 100.41 | 0.97 | 100.42 | 0.97 | 100.47 | 0.97 | 100.47 | 0.97 |
0.65 | 64.24 | 0.89 | 64.24 | 0.90 | 64.37 | 0.89 | 64.37 | 0.89 |
0.70 | 49.34 | 0.91 | 49.34 | 0.92 | 49.56 | 0.92 | 49.56 | 0.92 |
0.75 | 129.12 | 0.97 | 129.12 | 0.97 | 129.19 | 0.97 | 129.19 | 0.97 |
0.80 | 148.40 | 0.96 | 148.41 | 0.97 | 148.47 | 0.96 | 148.47 | 0.96 |
0.85 | 124.02 | 0.95 | 124.02 | 0.95 | 124.12 | 0.95 | 124.12 | 0.94 |
0.90 | 71.87 | 0.84 | 71.87 | 0.85 | 72. 10 | 0.84 | 72.10 | 0.84 |
α | Kissiger-SY Iteration | Ozawa-SY Iteration | Lee-Beck Iteration | Gorbatchev Iteration | ||||
---|---|---|---|---|---|---|---|---|
E/(KJ/mol) | R2 | E/(KJ/mol) | R2 | E/(KJ/mol) | R2 | E/(KJ/mol) | R2 | |
0.15 | 133.40 | 0.95 | 133.40 | 0.94 | 133.42 | 0.93 | 133.42 | 0.95 |
0.20 | 129.26 | 0.96 | 129.26 | 0.96 | 129.29 | 0.96 | 129.29 | 0.95 |
0.25 | 129.84 | 0.97 | 129.84 | 0.97 | 128.91 | 0.98 | 129.86 | 0.97 |
0.30 | 128.89 | 0.98 | 128.89 | 0.99 | 128.22 | 0.99 | 128.91 | 0.98 |
0.35 | 128.19 | 0.99 | 128.19 | 0.98 | 128.97 | 0.99 | 128.22 | 0.99 |
0.40 | 128.94 | 0.99 | 128.94 | 0.99 | 129.46 | 0.99 | 128.97 | 0.99 |
0.45 | 129.44 | 0.99 | 129.44 | 0.99 | 1 29.95 | 0.99 | 129.46 | 0.99 |
0.50 | 129.93 | 0.99 | 129.93 | 0.99 | 131.36 | 0.99 | 129.95 | 0.99 |
0.55 | 131.33 | 0.99 | 131.33 | 0.99 | 132.90 | 0.99 | 131.36 | 0.99 |
0.60 | 132.87 | 0.98 | 132.87 | 0.99 | 134.60 | 0.99 | 132.90 | 0.96 |
0.65 | 134.57 | 0.98 | 134.57 | 0.97 | 136.70 | 0.98 | 134.60 | 0.97 |
0.70 | 136.67 | 0.95 | 136.67 | 0.94 | 137.78 | 0.96 | 136.70 | 0.95 |
0.75 | 137.76 | 0.95 | 137.76 | 0.92 | 138.50 | 0.96 | 137.78 | 0.95 |
0.80 | 138.48 | 0.96 | 138.48 | 0.91 | 140.78 | 0.94 | 138.50 | 0.94 |
0.85 | 140.75 | 0.95 | 140.75 | 0.92 | 144.14 | 0.95 | 140.78 | 0.93 |
0.90 | 144.11 | 0.95 | 144.1 1 | 0.91 | 146.39 | 0.94 | 144.14 | 0.94 |
Mechanism Function | β /K∙min−1 | Universal Integration | Differential Equation | ||||
---|---|---|---|---|---|---|---|
E/ KJ∙mol−1 | Ln (A/min−1) | R2 | E/ KJ∙mol−1 | Ln (A/min−1) | R2 | ||
AE4 | 8 | 65.27 | 5.97 | 0.97 | 71.62 | 6.79 | 0.97 |
12 | 74.16 | 7.32 | 0.97 | 75.81 | 7.38 | 0.96 | |
16 | 71.87 | 7.19 | 0.98 | 76.89 | 7.77 | 0.97 | |
20 | 75.48 | 7.77 | 0.96 | 72.49 | 7.22 | 0.95 | |
AE5 | 8 | 84.26 | 8.9 | 0.98 | 90.61 | 9.73 | 0.98 |
12 | 95.36 | 10.49 | 0.98 | 97.04 | 10.55 | 0.97 | |
16 | 92.50 | 10.25 | 0.98 | 97.54 | 10.84 | 0.98 | |
20 | 97.04 | 10.93 | 0.97 | 94.10 | 10.37 | 0.96 | |
AE6 | 8 | 103.25 | 11.82 | 0.98 | 109.6 | 12.67 | 0.98 |
12 | 116.57 | 13.65 | 0.98 | 118.27 | 13.72 | 0.97 | |
16 | 113.13 | 13.31 | 0.98 | 118.19 | 13.91 | 0.98 | |
20 | 118.61 | 14.08 | 0.97 | 115.7 | 13.53 | 0.96 |
Mechanism Function | β /K∙min−1 | Universal Integration | Differential Equation | ||||
---|---|---|---|---|---|---|---|
E/ KJ∙mol−1 | Ln (A/min−1) | R2 | E/ KJ∙mol−1 | Ln (A/min−1) | R2 | ||
AE4 | 5 | 73.96 | 8.97 | 0.92 | 72.47 | 10.37 | 0.90 |
10 | 95.41 | 11.84 | 0.93 | 86.88 | 12.60 | 0.91 | |
15 | 81.44 | 9.99 | 0.95 | 80.07 | 12.08 | 0.94 | |
20 | 112.18 | 14.86 | 0.94 | 101.86 | 15.73 | 0.92 | |
AE5 | 5 | 116.85 | 16.31 | 0.93 | 115.22 | 17.68 | 0.92 |
10 | 149.73 | 20.74 | 0.94 | 140.93 | 21.42 | 0.93 | |
15 | 127.66 | 17.57 | 0.96 | 126.24 | 19.64 | 0.95 | |
20 | 174.21 | 24.81 | 0.95 | 163.81 | 25.63 | 0.94 | |
AE6 | 5 | 159.74 | 23.66 | 0.93 | 158.04 | 25.01 | 0.93 |
10 | 204.05 | 29.63 | 0.94 | 195.08 | 30.27 | 0.94 | |
15 | 173.89 | 25 15 | 0.96 | 172 43 | 27 22 | 0.96 | |
20 | 236.24 | 34.75 | 0.95 | 225.78 | 35.55 | 0.94 |
α | Kissinger-SY Iteration | Ozawa-SY Iteration | ||
---|---|---|---|---|
E/KJ∙mol−1 | lnA/min−1 | E/KJ∙mol−1 | lnA/min−1 | |
0.15 | 57.61 | 0.92 | 57.61 | 0.92 |
0.20 | 92.19 | 9.83 | 92.19. | 9.83 |
0.25 | 112.61 | 15.02 | 112.62 | 15.02 |
0.30 | 122.64 | 17.74 | 122.64 | 17.74 |
0.35 | 126.6 | 19.07 | 126.6 | 19.07 |
0.40 | 127.89 | 19.75 | 127.89 | 19.75 |
0.45 | 127.73 | 20.06 | 127.73 | 20.06 |
0.50 | 123.28 | 19.43 | 123.28 | 19.43 |
0.55 | 111.54 | 17.22 | 111.54 | 17.22 |
0.60 | 100.41 | 14.95 | 100.42 | 14.95 |
0.65 | 64.24 | 8.53 | 64.24 | 8.53 |
0.70 | 49.34 | 5.84 | 49.34 | 5.84 |
0.75 | 129.12 | 16.92 | 129.12 | 16.92 |
0.80 | 148.4 | 19.43 | 148.41 | 19.43 |
0.85 | 124.02 | 16.63 | 124.02 | 16.63 |
0.90 | 71.87 | 10.80 | 71.87 | 10.80 |
α | Kissinger-SY Iteration | Ozawa-SY Iteration | ||
---|---|---|---|---|
E/KJ∙mol−1 | lnA/min−1 | E/KJ∙mol−1 | lnA/min−1 | |
0.15 | 129.84 | 19.38 | 129.84 | 19.38 |
0.20 | 128.89 | 19.97 | 128.89 | 19.97 |
0.25 | 128.19 | 20.44 | 128.19 | 20.44 |
0.30 | 128.94 | 21.08 | 128.94 | 21.08 |
0.35 | 129.44 | 21.59 | 129.44 | 21.59 |
0.40 | 129.93 | 22.05 | 129.93 | 22.05 |
0.45 | 131.33 | 22.64 | 131.33 | 22.64 |
0.50 | 132.87 | 23.22 | 132.87 | 23.22 |
0.55 | 134.57 | 23.80 | 134.57 | 23.80 |
0.60 | 136.67 | 24.42 | 136.67 | 24.42 |
0.65 | 137.76. | 24.81 | 137.76. | 24.81 |
0.70 | 13848 | 25.09 | 13848 | 25.09 |
0.75 | 140.75 | 25.60 | 140.75 | 25.60 |
0.80 | 144.11 | 26.20 | 144.11 | 26.20 |
0.85 | 146.36 | 26.42 | 146.36 | 26.42 |
0.90 | 142.26 | 25.32 | 142.26 | 25.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, T.; Yang, R.; Sun, C.; Lin, Y.; Liu, R.; Yang, H.; Chen, J.; Gu, X. Pyrolysis Kinetics of Lignin-Based Flame Retardants Containing MOFs Structure for Epoxy Resins. Molecules 2023, 28, 2699. https://doi.org/10.3390/molecules28062699
Yao T, Yang R, Sun C, Lin Y, Liu R, Yang H, Chen J, Gu X. Pyrolysis Kinetics of Lignin-Based Flame Retardants Containing MOFs Structure for Epoxy Resins. Molecules. 2023; 28(6):2699. https://doi.org/10.3390/molecules28062699
Chicago/Turabian StyleYao, Tianyu, Ruohan Yang, Cong Sun, Yuzhu Lin, Ruoqi Liu, Hongyu Yang, Jiajia Chen, and Xiaoli Gu. 2023. "Pyrolysis Kinetics of Lignin-Based Flame Retardants Containing MOFs Structure for Epoxy Resins" Molecules 28, no. 6: 2699. https://doi.org/10.3390/molecules28062699
APA StyleYao, T., Yang, R., Sun, C., Lin, Y., Liu, R., Yang, H., Chen, J., & Gu, X. (2023). Pyrolysis Kinetics of Lignin-Based Flame Retardants Containing MOFs Structure for Epoxy Resins. Molecules, 28(6), 2699. https://doi.org/10.3390/molecules28062699