Interactions between Damaged Hair Keratin and Juglone as a Possible Restoring Agent: A Vibrational and Scanning Electron Microscopy Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. IR Analyses
2.1.1. Model Compounds
2.1.2. Brown Hair Treated with KOH and Methyl Thioglycolate
2.1.3. Brown Hair Treated with KOH, Methyl Thioglycolate, and Juglone
2.1.4. Brown Hair Bleached Three Times and Treated with Juglone
2.1.5. Brown Hair Bleached Three Times after a Reducing Step with NaHSO3 and Treatment with Juglone
2.2. SEM Analyses
2.2.1. Brown Hair Treated with KOH, Methyl Thioglycolate, and Juglone
2.2.2. Brown Hair Bleached Three Times and Treated with Juglone
2.2.3. Brown Hair Bleached Three Times Treated with KOH, Reducing NaHSO3 and Juglone
3. Materials and Methods
3.1. Materials
3.2. IR and SEM Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, K.L.A.; Kazarian, S.G.; Mavraki, A.; Williams, D.R. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron. Appl. Spectrosc. 2005, 59, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Kuzuhara, A.; Hori, T. Reduction mechanism of thioglycolic acid on keratin fibers using microspectrophotometry and FT-Raman spectroscopy. Polymer 2003, 44, 7963–7970. [Google Scholar] [CrossRef]
- Breakspear, S.; Smith, J.R.; Luengo, G. EVect of the covalently linked fatty acid 18-MEA on the nanotribology of’ ‘hair’s outermost surface. J. Struct. Biol. 2005, 149, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Ito, T.; Hosokawa, M.; Aono, M.; Yokomaku, A.; Konta, H.; Imura, K.; Kato, T.; Sugiyama, K. Repairing effects of diglucosyl gallic acid on coloring-damaged hair. J. Oleo Sci. 2004, 53, 295–304. [Google Scholar] [CrossRef]
- Cruz, C.F.; Costa, C.; Gomes, A.C.; Matamà, T.; Cavaco-Paulo, A. Human Hair and the Impact of Cosmetic Procedures: A Review on Cleansing and Shape-Modulating Cosmetics. Cosmetics 2016, 3, 26. [Google Scholar] [CrossRef]
- Evans, T. A Review of Permanent Waving and Perm Chemistry. J. Cosmet. Sci. 2021, 72, 99–133. [Google Scholar] [PubMed]
- Wickett, R.R. Kinetic study of hair reduction using a simple fiber technique. J. Soc. Cosmet. Chem. 1983, 34, 301–316. [Google Scholar]
- Douthwaite, F.J.; Lewis, D.M. The formation of cysteine-S-sulphonate groups in wool and the effect on shrink-resistance. J. Soc. Dye. Colour. 1994, 110, 304–307. [Google Scholar] [CrossRef]
- Inbaraj, J.J.; Chignell, C.F. Cytotoxic Action of Juglone and Plumbagin: A Mechanistic Study Using HaCaT Keratinocytes. Chem. Res. Toxicol. 2004, 17, 55–62. [Google Scholar] [CrossRef]
- Di Foggia, M.; Boga, C.; Micheletti, G.; Nocentini, B.; Taddei, P. Structural investigation on damaged hair keratin treated with α,β-unsaturated Michael acceptors used as repairing agents. Int. J. Biol. Macromol. 2021, 167, 620–632. [Google Scholar] [CrossRef]
- Arifeen, W.; Rehman, F.; Adeel, S.; Zuber, M.; Ahmad, M.N.; Ahmad, T. Environmental friendly extraction of walnut bark-based juglone natural colorant for dyeing studies of wool fabric. Environ. Sci. Pollut. Res. 2021, 28, 49958–49966. [Google Scholar] [CrossRef] [PubMed]
- Boga, C.; Delpivo, C.; Ballarin, B.; Morigi, M.; Galli, S.; Micheletti, G.; Tozzi, S. Investigation on the dyeing power of some organic natural compounds for a green approach to hair dyeing. Dye. Pigment. 2013, 97, 9–18. [Google Scholar] [CrossRef]
- Beiki, T.; Najafpour, G.D.; Hosseini, M. Evaluation of anti-microbial and dyeing properties of walnut (Juglans regia L.) green husk extract for cosmetics. Color. Technol. 2017, 134, 71–81. [Google Scholar] [CrossRef]
- Burnett, C.L.; Bergfeld, W.F.; Belsito, D.V.; Klaasen, C.D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Final Amended Report on the Safety Assessment of Ammonium Thioglycolate, Butyl Thioglycolate, Calcium Thioglycolate, Ethanolamine Thioglycolate, Ethyl Thioglycolate, Glyceryl Thioglycolate, Isooctyl Thioglycolate, Isopropyl Thioglycolate, Magnesium Thioglycolate, Methyl Thioglycolate, Potassium Thioglycolate, Sodium Thioglycolate, and Thioglycolic Acid. Int. J. Toxicol. 2009, 28, 68–133. [Google Scholar] [CrossRef] [PubMed]
- Gomez, N.; Julia, M.R.; Lewis, D.M.; Erra, P. The use of FTIR to investigate modifications to wool treated with sodium sulphite and cationic protein hydrolysate. J. Soc. Dyers Colour. 1995, 111, 281–284. [Google Scholar] [CrossRef]
- Micheletti, G.; Boga, C.; Zalambani, C.; Farruggia, G.; Esposito, E.; Fiori, J.; Rizzardi, N.; Taddei, P.; Di Foggia, M.; Calonghi, N. Synthesis of thia-Michael-Type Adducts between Naphthoquinones and N-Acetyl-L-Cysteine and Their Biological Activity. Molecules 2022, 27, 5645. [Google Scholar] [CrossRef]
- Rulev, A.Y. Aza-Michael Reaction: A Decade Later—Is the Research Over? Eur. J. Org. Chem. 2023, 26, e202300451. [Google Scholar] [CrossRef]
- Cheng, W.X.; Jin, B.K.; Huang, P.; Cheng, L.J.; Zhang, S.Y.; Tian, Y.P. Investigation on the π-Dimer/σ-Dimer of 1,8-Dihydroxy-9,10-anthracenedione in the Process of Electrochemical Reduction by Using IR Spectroelectrochemical Cyclic Voltabsorptometry and Derivative Cyclic Voltabsorptometry. J. Phys. Chem. C 2013, 117, 3940–3948. [Google Scholar] [CrossRef]
- Croitoru, A.M.; Morosan, A.; Tihauan, B.; Oprea, O.; Motelica, L.; Trusca, R.; Nicoara, A.I.; Popescu, R.C.; Savu, D.; Mihaiescu, D.E.; et al. Novel Graphene Oxide/Quercetin and Graphene Oxide/Juglone Nanostructured Platforms as Effective Drug Delivery Systems with Biomedical Applications. Nanomaterials 2022, 12, 1943. [Google Scholar] [CrossRef]
- Ebrahimi, I.; Gashti, M.P. Extraction of juglone from Pterocarya fraxinifolia leaves for dyeing, anti-fungal finishing, and solar UV protection of wool. Color. Technol. 2015, 131, 451–457. [Google Scholar] [CrossRef]
- Jin, B.; Huang, J.; Zhao, A.; Zhang, S.; Tian, Y.; Yang, J. Direct evidence of hydrogen-bonding and/or protonation effect on p-benzoquinone electrochemical reduction by in situ IR spectroelectrochemical study. J. Electroanal. Chem. 2010, 650, 116–126. [Google Scholar] [CrossRef]
- Kubinyi, M.; Billes, F.; Grofcsik, A.; Keresztury, G. Vibrational spectra and normal coordinate analysis of phenol and hydroquinone. J. Mol. Struct. 1992, 266, 339–344. [Google Scholar] [CrossRef]
- Li, D.; Cheng, L.; Jin, B. Investigation on PCET–accompanied Dimerization of 5–hydroxy–1,4–naphthoquinone in the Process of Electrochemical Reduction by InSitu FT–IR Spectroelectrochemistry and Density Functional Calculation. Electrochim. Acta 2014, 130, 387–396. [Google Scholar] [CrossRef]
- Malaganvi, S.S.; Yenagi, J.T.; Tonannavar, J. Spectroscopic and electronic structure characterization of hydrogen bonding in 2-Bromohydroquinone. J. Mol. Struct. 2019, 1181, 71–82. [Google Scholar] [CrossRef]
- Piro, B.; Haccoun, J.; Pham, M.C.; Tran, L.D.; Rubin, A.; Perrot, H.; Gabrielli, C. Study of the DNA hybridisation transduction behavior of a quinone-containing electroactive polymer by cyclic voltammetry and electrochemical impedance spectroscopy. J. Electroanal. Chem. 2005, 577, 155–165. [Google Scholar] [CrossRef]
- Ramoji, A.; Yenagi, J.; Tonannavar, J. 2-Bromohydroquinone: Structures, vibrational assignments and RHF, B- and B3-based density functional calculations. Spectrochim. Acta Part A 2008, 69, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Boeckx, B.; Ramaekers, R.; Maes, G. A theoretical and matrix-isolation FT-IR investigation of the conformational landscape of N-acetylcysteine. J. Mol. Struct. 2010, 261, 73–81. [Google Scholar] [CrossRef]
- Koleva, B.; Spiteller, M.; Kolev, T. Polarized spectroscopic elucidation of N-acetyl-L-cysteine, L-cysteine, L cystine, L-ascorbic acid and a tool for their determination in solid mixtures. Amino Acids 2010, 38, 295–304. [Google Scholar] [CrossRef]
- Picquart, M.; Abedinzadeh, Z.; Grajcar, L.; Baron, M.H. Spectroscopic study of N-acetylcysteine and N-acetylcystine/hydrogen peroxide complexation. Chem. Phys. 1998, 228, 279–291. [Google Scholar] [CrossRef]
- Picquart, M.; Grajcar, L.; Baron, M.H.; Abedinzadeh, Z. Vibrational Spectroscopic Study of Glutathione Complexation in Aqueous Solutions. Biospectroscopy 1999, 5, 328–337. [Google Scholar] [CrossRef]
- Qian, W.; Krimm, S. Vibrational Analysis of Glutathione. Biopolymers 1994, 34, 1377–1394. [Google Scholar] [CrossRef] [PubMed]
- Durgaryan, A.A.; Arakelyan, R.A.; Durgaryan, N.A. Synthesis of Polymers Containing Polyaniline Fragments Linked by 1,4-Benzoquinone Groups. Russ. J. Gen. Chem. 2017, 87, 139–144. [Google Scholar] [CrossRef]
- Long, K.F.; Wang, H.; Dimos, T.T.; Bowman, C.N. Effects of Thiol Substitution on the Kinetics and Efficiency of Thiol-Michael Reactions and Polymerizations. Macromolecules 2021, 54, 3093–3100. [Google Scholar] [CrossRef]
- Sethi, A.; Singh, R.P.; Pathak, R.; Shukla, D.; Deep, A.; Yadav, P. One pot synthesis of novel pregnane-sulphur prodrugs, spectroscopic investigation, conformational analysis, chemical reactivity, Fukui function and their mathematical model. J. Mol. Struct. 2020, 1201, 127–136. [Google Scholar] [CrossRef]
- Socrates, G. Infrared Characteristic Group Frequencies, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 1994. [Google Scholar]
- Fernandez-d’Arlas, B. Improved aqueous solubility and stability of wool and feather proteins by reactive-extraction with H2O2 as bisulfide (-S-S-) splitting agent. Eur. Polym. J. 2018, 103, 187–197. [Google Scholar] [CrossRef]
- Boga, C.; Taddei, P.; Micheletti, G.; Ascari, F.; Ballarin, B.; Morigi, M.; Galli, S. Formaldehyde replacement with glyoxylic acid in semi-permanent hair straightening: A new and multidisciplinary investigation. Int. J. Cosmet. Sci. 2014, 36, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Taddei, P.; Boga, C.; Micheletti, G.; Ballarin, B. Vibrational study on the interactions between yak keratin fibres and glyoxylic acid. J. Raman Spectrosc. 2014, 46, 100–108. [Google Scholar] [CrossRef]
- Sanchez Ramirez, D.O.; Tonetti, C.; Cruz-Maya, I.; Guarino, V.; Peila, R.; Carletto, R.A.; Varesano, A.; Vineis, C. Design of cysteine-S-sulfonated keratin via pH driven processes: Micro-Structural Properties, biocidal activity and in vitro validation. Eur. Polym. J. 2022, 170, 111169. [Google Scholar] [CrossRef]
- Joo, K.-M.; Kim, A.-R.; Kim, S.-N.; Kim, B.-M.; Lee, H.-K.; Bae, S.-J.; Lee, J.-H.; Lim, K.-M. Metabolomic analysis of amino acids and lipids in human hair altered by dyeing, perming and bleaching. Exp. Dermatol. 2016, 25, 729–731. [Google Scholar] [CrossRef]
- Erra, P.; Gomez, N.; Dolcet, L.M.; Julià, M.R.; Lewis, D.M.; Willoughby, J.H. FTIR analysis to study chemical changes in wool following a sulfitolysis treatment. Text. Res. J. 1997, 67, 397–401. [Google Scholar] [CrossRef]
- Bloch, L.D.; Goshiyama, A.M.; Dario, M.F.; Escudeiro, C.C.; Sarruf, F.D.; Velasco, M.R.V.; Valente, N.Y.S. Chemical and physical treatments damage Caucasian and Afro-ethnic hair fibre: Analytical and image assays. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.M.; Lewis, D.M. An FTIR spectroscopic study of the photodegradation and thermal degradation of wool. J. Soc. Dyers Colour. 1993, 109, 21–24. [Google Scholar] [CrossRef]
- Cataldo, F.; Ragni, P.; Iglesias-Groth, I.; Manchado, A. Solid state radiolysis of sulphur-containing amino acids: Cysteine, cystine and methionine. J. Radioanal. Nucl. Chem. 2011, 287, 573–580. [Google Scholar] [CrossRef]
- Centeno, J.A.; Ishak, K.G.; Mullick, F.G.; Gahl, W.A.; O’Leary, T.J. Infrared Microspectroscopy and Laser Raman Microprobe in the Diagnosis of Cystinosis. Appl. Spectrosc. 1994, 48, 569–572. [Google Scholar] [CrossRef]
- Fitz-Binder, C.; Pham, T.; Bechtold, T. A second life for low-grade wool through formation of all-keratin composites in cystine reducing calcium chloride–water–ethanol solution. J. Chem. Technol. Biotechnol. 2019, 94, 3384–3392. [Google Scholar] [CrossRef]
- Kumagai, Y.; Shinkai, Y.; Miura, T.; Cho, A.K. The Chemical Biology of Naphthoquinones and Its Environmental Implications. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 221–247. [Google Scholar] [CrossRef]
- Kapoor, N.; Kandwal, P.; Sharma, G.; Gambhir, L. Redox ticklers and beyond: Naphthoquinone repository in the spotlight against inflammation and associated maladies. Pharmacol. Res. 2021, 174, 105968. [Google Scholar] [CrossRef]
- Noguchi, T.; Nojiri, M.; Takei, K.; Odaka, M.; Kamiya, N. Protonation Structures of Cys-Sulfinic and Cys-Sulfenic Acids in the Photosensitive Nitrile Hydratase Revealed by Fourier Transform Infrared Spectroscopy. Biochemistry 2003, 42, 11642–11650. [Google Scholar] [CrossRef]
- Yoshida, S.; Koike, K. Lipid and Membrane Dynamics in Biological Tissues—Infrared Spectroscopic Studies. In Advances in Planar Lipid Bilayers and Liposomes; Iglic, A., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 13, pp. 1–32. [Google Scholar] [CrossRef]
- Chu, H.W.; Sethy, B.; Hsieh, P.W.; Horng, J.T. Identification of Potential Drug Targets of Broad-Spectrum Inhibitors with a Michael Acceptor Moiety Using Shotgun Proteomics. Viruses 2021, 13, 1756. [Google Scholar] [CrossRef]
- Wolfram, L.J. Human hair: A unique physicochemical composite. J. Am. Acad. Dermatol. 2003, 48, S106–S114. [Google Scholar] [CrossRef]
- Di Foggia, M.; Boga, C.; Micheletti, G.; Nocentini, B.; Taddei, P. Vibrational Raman and IR data on brown hair subjected to bleaching. Data Brief 2021, 38, 107439. [Google Scholar] [CrossRef] [PubMed]
- Church, J.S.; Millington, K.R. Photodegradation of Wool Keratin: Part 1. Vibrational Spectroscopic Studies. Biospectroscopy 1996, 2, 249–258. [Google Scholar] [CrossRef]
- Signori, V.; Lewis, D.M. FTlR investigation of the damage produced on human hair by weathering and bleaching processes: Implementation of different sampling techniques and data processing. Int. J. Cosmet. Sci. 1997, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Fellows, A.P.; Casford, M.T.L.; Davies, P.B. Nanoscale Molecular Characterization of Hair Cuticle Cells Using Integrated Atomic Force Microscopy–Infrared Laser Spectroscopy. Appl. Spectrosc. 2020, 74, 1540–1550. [Google Scholar] [CrossRef]
- Gillece, T.; Senak, L.; Mc Mullen, R.L. Characterization of Bleached Hair: Vibrational Spectroscopy, Thermal Analysis, and Determination of Equivalent Damage Factor. J. Cosmet. Sci. 2021, 72, 519–546. [Google Scholar]
SAMPLE | IAmide I/IAmide II | I1175/IAmide I | I1040/IAmide I | A1025/A1040 |
---|---|---|---|---|
Brown hair + KOH | 1.035 ± 0.005 C | 0.126 ± 0.006 A | 0.253 ± 0.013 A | 0.70 ± 0.06 NS |
Brown hair + KOH + MT 2 T | 1.082 ± 0.003 B | 0.082 ± 0.005 B | 0.172 ± 0.011 B | 0.61 ± 0.09 NS |
Brown hair + KOH + MT 3 T | 1.100 ± 0.003 A | 0.064 ± 0.004 C | 0.147 ± 0.008 C | 0.60 ± 0.04 NS |
SAMPLE | IAmide I/IAmide II | I1175/IAmide I | I1040/IAmide I | A1025/A1040 |
---|---|---|---|---|
Brown hair bleached 3 T | 0.930 ± 0.007 NS | 0.317 ± 0.005 A | 0.388 ± 0.012 A | 0.78 ± 0.10 NS |
Bleached 3 T + KOH + NaHSO3 | 0.940 ± 0.009 NS | 0.299 ± 0.005 B | 0.352 ± 0.011 B | 0.74 ± 0.08 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Foggia, M.; Taddei, P.; Boga, C.; Nocentini, B.; Micheletti, G. Interactions between Damaged Hair Keratin and Juglone as a Possible Restoring Agent: A Vibrational and Scanning Electron Microscopy Study. Molecules 2024, 29, 320. https://doi.org/10.3390/molecules29020320
Di Foggia M, Taddei P, Boga C, Nocentini B, Micheletti G. Interactions between Damaged Hair Keratin and Juglone as a Possible Restoring Agent: A Vibrational and Scanning Electron Microscopy Study. Molecules. 2024; 29(2):320. https://doi.org/10.3390/molecules29020320
Chicago/Turabian StyleDi Foggia, Michele, Paola Taddei, Carla Boga, Benedetta Nocentini, and Gabriele Micheletti. 2024. "Interactions between Damaged Hair Keratin and Juglone as a Possible Restoring Agent: A Vibrational and Scanning Electron Microscopy Study" Molecules 29, no. 2: 320. https://doi.org/10.3390/molecules29020320
APA StyleDi Foggia, M., Taddei, P., Boga, C., Nocentini, B., & Micheletti, G. (2024). Interactions between Damaged Hair Keratin and Juglone as a Possible Restoring Agent: A Vibrational and Scanning Electron Microscopy Study. Molecules, 29(2), 320. https://doi.org/10.3390/molecules29020320