Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects
Abstract
:1. Introduction
2. Age Is the Principal Risk Factor for Ischemic Stroke
3. The Translational Road Block in Stroke: A Failure to Account for Comorbidity?
4. Obesity as an Important Co-Morbidity for Ischemic Stroke
5. Non-Pharmaceutical Approaches to Ischemic Stroke Prevention: Calorie Restriction
6. Reduction of Brain Inflammation by Gaseous Hypothermia Applied for 48 h
7. Twenty Four Hours of Hypothermia Has Temporary Efficacy in Reducing Brain Infarction and Inflammation in Aged Rats
8. Mechanisms of Hypothermia-Induced Protection against Ischemic Injury
9. Post-Stroke Hypothermia Diminishes the Expression of Genes Coding for Proteases
10. Post-Stroke Hypothermia Enhances Post-Stroke Angiogenesis in Aged Rats
11. Post-Stroke Hypothermia Does not Stimulate Neurogenesis in Post-Stroke Aged Rats
Author Contributions
Conflicts of Interest
References
- Lloyd-Jones, D.M. Cardiovascular risk prediction: Basic concepts, current status, and future directions. Circulation 2010, 121, 1768–1777. [Google Scholar] [CrossRef] [PubMed]
- Appelros, P.; Nydevik, I.; Viitanen, M. Poor outcome after first-ever stroke: Predictors for death, dependency, and recurrent stroke within the first year. Stroke 2003, 34, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Roger, V.L.; Go, A.S.; Lloyd-Jones, D.M.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics—2012 update: A report from the American Heart Association. Circulation 2012, 125, e2–e220. [Google Scholar] [PubMed]
- Tacutu, R.; Budovsky, A.; Fraifeld, V.E. The NetAge database: A compendium of networks for longevity, age-related diseases and associated processes. Biogerontology 2010, 11, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Tacutu, R.; Budovsky, A.; Yanai, H.; Fraifeld, V.E. Molecular links between cellular senescence, longevity and age-related diseases—A systems biology perspective. Aging 2011, 3, 1178–1191. [Google Scholar] [CrossRef] [PubMed]
- Wolfson, M.; Budovsky, A.; Tacutu, R.; Fraifeld, V. The signaling hubs at the crossroad of longevity and age-related disease networks. Int. J. Biochem. Cell Biol. 2009, 41, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Donnan, G.A.; Davis, S.M. Breaking the 3 h barrier for treatment of acute ischaemic stroke. Lancet Neurol. 2008, 7, 981–982. [Google Scholar] [CrossRef]
- Goldstein, L.B.; Bushnell, C.D.; Adams, R.J.; Appel, L.J.; Braun, L.T.; Chaturvedi, S. Guidelines for the primary prevention of stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011, 42, 517–584. [Google Scholar] [CrossRef] [PubMed]
- Rewell, S.S.; Fernandez, J.A.; Cox, S.F.; Spratt, N.J.; Hogan, L.; Aleksoska, E. Inducing stroke in aged, hypertensive, diabetic rats. J. Cereb. Blood Flow Metab. 2010, 30, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Saunders, D.H.; Greig, C.A.; Mead, G.E. Physical activity and exercise after stroke: Review of multiple meaningful benefits. Stroke 2014, 45, 3742–3747. [Google Scholar] [CrossRef] [PubMed]
- Eng, J.J. Fitness and Mobility Exercise (FAME) Program for stroke. Top. Geriatr. Rehabil. 2010, 26, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Sacco, R.L.; Chong, J.Y.; Prabhakaran, S.; Elkind, M.S. Experimental treatments for acute ischaemic stroke. Lancet 2007, 369, 331–341. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Kokaia, Z. Perturbed cellular response to brain injury during aging. Ageing Res. Rev. 2011, 10, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Plasticity of the human motor cortex and recovery from stroke. Brain Res. Brain Res. Rev. 2001, 36, 169–174. [Google Scholar] [CrossRef]
- Badan, I.; Buchhold, B.; Hamm, A.; Gratz, M.; Walker, L.C.; Platt, D. Accelerated glial reactivity to stroke in aged rats correlates with reduced functional recovery. J. Cereb. Blood Flow Metab. 2003, 23, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Lucke-Wold, B.P.; Logsdon, A.F.; Turner, R.C.; Rosen, C.L.; Huber, J.D. Aging, the metabolic syndrome, and ischemic stroke: Redefining the approach for studying the blood-brain barrier in a complex neurological disease. Adv. Pharmacol. 2014, 71, 411–449. [Google Scholar] [PubMed]
- Petcu, E.B.; Smith, R.A.; Miroiu, R.I.; Opris, M.M. Angiogenesis in old-aged subjects after ischemic stroke: A cautionary note for investigators. J. Angiogenes Res. 2010, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.N.; Buggey, H.F.; Denes, A.; Allan, S.M. Systemic immune activation shapes stroke outcome. Mol. Cell Neurosci. 2013, 53, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Buga, A.M.; Di Napoli, M.; Popa-Wagner, A. Preclinical models of stroke in aged animals with or without comorbidities: Role of neuroinflammation. Biogerontology 2013, 14, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Sandu, R.E.; Uzoni, A.; Petcu, E.B.; Popa-Wagner, A. Neuroinflammation and comorbidities are frequently ignored factors in CNS pathology. Neural Regen. Res. 2015, 10, 1349–1355. [Google Scholar] [PubMed]
- Haley, M.J.; Lawrence, C.B. Obesity and stroke: Can we translate from rodents to patients? J. Cereb. Blood Flow Metab. 2016, 36, 2007–2021. [Google Scholar] [CrossRef] [PubMed]
- Towfighi, A.; Ovbiagele, B. The Impact of Body Mass Index on Mortality after Stroke. Stroke 2009, 40, 2704–2708. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, P.; Lanfranco, D.; Cairella, G.; Garbagnati, F.; Cappuccio, F.; Scalfi, F. Excess body weight and incidence of stroke: Meta-analysis of prospective studies with 2 million participants. Stroke 2010, 41, e418–e426. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Prakash, R.; Chawla, D.; Du, W.; Didion, S.; Filossa, J.; Zhang, Q.; Brann, D.W.; Lima, V.V.; Tostes, R.C.; et al. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 304, R1001–R1008. [Google Scholar] [CrossRef] [PubMed]
- Arenillas, J.F.; Ispierto, L.; Millan, M.; Escudero, D.; Pérez de la Ossa, N.; Dorado, L.; Guerrero, C.; Serena, J.; Castillo, J.; Dávalos, A. Metabolic syndrome and resistance to IV thrombolysis in middle cerebralartery ischemic stroke. Neurology 2008, 71, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, I.; Ohe, Y.; Fukuoka, T.; Dembo, T.; Nagoya, H.; Kato, Y.; Maruyama, H.; Horiuchi, Y.; Tanahashi, N. Relationship of obesity to recanalization after hyperacute recombinant tissue-plasminogen activator infusion therapy in patients with middle cerebral artery occlusion. J. Stroke Cerebrovasc. Dis. 2012, 21, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, T.V.; Phillips, M.T.; Cheng, A.; Morrell, C.H.; Mattson, M.P.; Wan, R. Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann. Neurol. 2010, 67, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Pradillo, J.M.; Murray, K.N.; Coutts, G.A.; Moraga, A.; Oroz-Gonjar, F.; Boutin, H.; Moro, M.A.; Lizasoain, I.; Rothwell, N.J.; Allan, S.M. Reparative effects of interleukin-1 receptor antagonist in young and aged/co-morbid rodents after cerebral ischemia. Brain Behav. Immun. 2017, 61, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Noyan, H.; El-Mounayri, O.; Isserlin, R.; Arab, S.; Momen, A.; Cheng, H.S.; Wu, J.; Afroze, T.; Li, R.K.; Fish, J.E.; et al. Cardioprotective Signature of Short-Term Caloric Restriction. PLoS ONE 2015, 10, e0130658. [Google Scholar] [CrossRef] [PubMed]
- Scherbakov, N.; Dirnagl, U.; Doehner, W. Body weight after stroke: Lessons from the obesity paradox. Stroke 2011, 42, 3646–3650. [Google Scholar] [CrossRef] [PubMed]
- Cai, D.; Liu, T. Inflammatory cause of metabolic syndrome via brain stress and NF-κB. Aging 2012, 4, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, G.; Zhang, H.; Karin, M.; Bai, H.; Cai, D. Hypothalamic IKKβ/NF-κB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008, 135, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Iso, H.; Jacobs, D.R.; Wentworth, D.; Neaton, J.D.; Cohen, J.D. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial. N. Engl. J. Med. 1989, 320, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Zechariah, A.; ElAli, A.; Doeppner, T.R.; Jin, F.; Hasan, M.R.; Helfrich, I. Vascular endothelial growth factor promotes pericyte coverage of brain capillaries, improves cerebral blood flow during subsequent focal cerebral ischemia, and preserves the metabolic penumbra. Stroke 2013, 44, 1690–1697. [Google Scholar] [CrossRef] [PubMed]
- Herz, J.; Hagen, S.I.; Bergmuller, E.; Sabellek, P.; Gothert, J.R.; Buer, J. Exacerbation of ischemic brain injury in hypercholesterolemic mice is associated with pronounced changes in peripheral and cerebral immune responses. Neurobiol. Dis. 2014, 62, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, O.; Sandu, R.E.; Balseanu, T.; Zavaleanu, A.; Gresita, A.; Petcu, E.B.; Popa-Wagner, A. Caloric restriction stabilizes body weight and accelerates behavioral recovery in aged rats after focal ischemia. Aging Cell 2017, 16, 1394–1403. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.; Calvert, J.W.; Duranski, M.R.; Ramachandran, A.; Lefer, D.J. Hydrogen sulfide attenuates hepatic ischemia-reperfusion injury: Role of antioxidant and antiapoptotic signaling. Am. J. Physiol. Heart Circ. Physiol. 2008, 295, H801–H806. [Google Scholar] [CrossRef] [PubMed]
- Johansen, F.F.; Hasseldam, H.; Rasmussen, R.S.; Bisgaard, A.S.; Bonfils, P.K.; Poulsen, S.S. Drug-induced hypothermia as beneficial treatment before and after cerebral ischemia. Pathobiology 2014, 81, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Blackstone, E.; Morrison, M.; Roth, M.B. H2S induces a suspended animation-like state in mice. Science 2005, 308, 518. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Ebner, M.; Ziemann, U.; Poli, S. In cold blood: Intraarteral coldinfusions for selective brain cooling in stroke. J. Cereb. Blood Flow Metab. 2014, 34, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Hennerici, M.G.; Kern, R.; Szabo, K. Non-pharmacological strategies for the treatment of acute ischaemic stroke. Lancet Neurol. 2013, 12, 572–584. [Google Scholar] [CrossRef]
- Kollmar, R.; Blank, T.; Han, J.L.; Georgiadis, D.; Schwab, S. Different degrees of hypothermia after experimental stroke: Short- and long-term outcome. Stroke 2007, 38, 1585–1589. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.C.; Grotta, J.C. Hypothermia for acute ischaemic stroke. Lancet Neurol. 2013, 12, 275–284. [Google Scholar] [CrossRef]
- Hemmen, T.M.; Raman, R.; Guluma, K.Z.; Meyer, B.C.; Gomes, J.A.; Cruz-Flores, S. Intravenous thrombolysis plus hypothermia for acute treatment of ischemic stroke (ICTuS-L): Final results. Stroke 2010, 41, 2265–2270. [Google Scholar] [CrossRef] [PubMed]
- Kammersgaard, L.P.; Rasmussen, B.H.; Jorgensen, H.S.; Reith, J.; Weber, U.; Olsen, T.S. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: A case-control study: The Copenhagen Stroke Study. Stroke 2000, 31, 2251–2256. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.H.; Nie, C.; Wang, H.L.; Huang, C.Y. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: A meta-analysis. J. Stroke Cerebrovasc. Dis. 2014, 23, 2736–2747. [Google Scholar] [CrossRef] [PubMed]
- De Georgia, M.A.; Krieger, D.W.; Abou-Chebl, A.; Devlin, T.G.; Jauss, M.; Davis, S.M. Cooling for Acute Ischemic Brain Damage (COOL AID): A feasibility trial of endovascular cooling. Neurology 2004, 63, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Lee, J.S.; Song, H.J.; Jeong, H.S.; Choi, H.A.; Lee, K. Therapeutic hypothermia after recanalization in patients with acute ischemic stroke. Stroke 2014, 45, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Piironen, K.; Tiainen, M.; Mustanoja, S.; Kaukonen, K.M.; Meretoja, A.; Tatlisumak, T. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: A randomized controlled trial. Stroke 2014, 45, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Van der Worp, H.B.; Macleod, M.R.; Bath, P.M.; Demotes, J.; Durand-Zaleski, I.; Gebhardt, B. EuroHYP-1: European multicenter, randomized, phase III clinical trial of therapeutic hypothermia plus best medical treatment vs. best medical treatment alone for acute ischemic stroke. Int. J. Stroke 2014, 9, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Florian, B.; Vintilescu, R.; Balseanu, A.T.; Grisk, O.; Walker, L.C. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci. Lett. 2008, 438, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Joseph, C.; Vintilescu, R.; Balseanu, A.T.; Moldovan, M.; Junker, H. Prolonged gaseous hypothermia prevents the upregulation of phagocytosis-specific protein annexin 1 and causes low-amplitude EEG activity in the aged rat brain after cerebral ischemia. J. Cereb. Blood Flow. Metab. 2012, 32, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Colbourne, F.; Corbett, D.; Zhao, Z.; Yang, J.; Buchan, A.M. Prolonged but delayed postischemic hypothermia: A long-term outcome study in the rat middle cerebral artery occlusion model. J. Cereb. Blood Flow Metab. 2000, 20, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.L.; Penner, M.; Wowk, S.; Orellana-Jordan, I.; Colbourne, F. Treatments (12 and 48 h) with systemic and brain-selective hypothermia techniques after permanent focal cerebral ischemia in rat. Exp. Neurol. 2009, 220, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Wie, G.; Hartings, J.A.; Yang, X.; Tortella, F.C.; Lu, X.C. Extraluminal cooling of bilateral common carotid arteries as a method to achieve selective brain cooling for neuroprotection. J. Neurotrauma 2008, 25, 549–559. [Google Scholar]
- Goossens, J.; Hachimi-Idrissi, S. Combination of therapeutic hypothermia and other neuroprotective strategies after an ischemic cerebral insult. Curr. Neuropharmacol. 2014, 12, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Chopp, M.; Knight, R.; Tidwell, C.D.; Helpern, J.A.; Brown, E.; Welch, K.M. The metabolic effects of mild hypothermia on global cerebral ischemia and recirculation in the cat: Comparison to normothermia and hyperthermia. J. Cereb. Blood Flow Metab. 1989, 9, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Balseanu, A.T.; Catalin, B.; Wagner, D.C.; Boltze, J.; Zagrean, A.M. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone. Front. Aging Neurosci. 2014, 6, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatarishvili, J.; Oki, K.; Monni, E.; Koch, P.; Memanishvili, T.; Popa-Wagner, A. Human induced pluripotent stem cells improve recovery in stroke-injured aged rats. Restor. Neurol. Neurosci. 2014, 32, 547–558. [Google Scholar] [PubMed]
- Hermann, D.M.; Chopp, M. Promoting brain remodelling and plasticity for stroke recovery: Therapeutic promise and potential pitfalls of clinical translation. Lancet Neurol. 2012, 11, 369–380. [Google Scholar] [CrossRef]
- Jinno, S. Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. J. Comp. Neurol. 2011, 519, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Popa-Wagner, A.; Dinca, I.; Yalikun, S.; Walker, L.; Kroemer, H.; Kessler, C. Accelerated delimitation of the infarct zone by capillary-derived nestin-positive cells in aged rats. Curr. Neurovasc. Res. 2006, 3, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Lucin, K.M.; Wyss-Coray, T. Immune activation in brain aging and neurodegeneration: Too much or too little? Neuron 2009, 64, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Chaboissier, M.C.; Martin, J.F.; Schedl, A.; de Crombrugghe, B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002, 16, 2813–2828. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.M.; Johnson, R.W. Increased interleukin-6 expression by microglia from brain of aged mice. J. Neuroimmunol. 1999, 93, 139–148. [Google Scholar] [CrossRef]
- Di Napoli, M.; Godoy, V.; Campi, L.; Masotti, C.; Smith, J.; Popa-Wagner, A. C-Reactive Protein After Intracerebral Hemorrhage. Time-course, Tissue Localization and Prognosis. Neurology 2012, 79, 660–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.L.; Chopp, M.; Roberts, C.; Jia, L.; Wei, M.; Lu, M. Ascl1 lineage cells contribute to ischemia-induced neurogenesis and oligodendrogenesis. J. Cereb. Blood Flow Metab. 2011, 31, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Buchan, A.M.; Li, H.; Blackburn, B. Neuroprotection achieved with a novel proteasome inhibitor which blocks NF-κB activation. Neuroreport 2000, 11, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Doeppner, T.R.; Mlynarczuk-Bialy, I.; Kuckelkorn, U.; Kaltwasser, B.; Herz, J.; Hasan, M.R. The novel proteasome inhibitor BSc2118 protects against cerebral ischaemia through HIF1A accumulation and enhanced angioneurogenesis. Brain 2012, 135, 3282–3297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.C. Neural subtype specification from embryonic stem cells. Brain Pathol. 2006, 16, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Sandu, R.E.; Balseanu, A.T.; Moldovan, M.; Popa-Wagner, A. Twenty-four hours hypothermia has temporary efficacy in reducing brain infarction and inflammation in aged rats. Neurobiol. Aging 2016, 38, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.C.; Li, C.Y.; Li, T.; Nie, D.Y.; Ye, F. Effect of mild hypothermia on angiogenesis in rats with focal cerebral ischemia. Neurosci. Lett. 2007, 422, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Yenari, M.A.; Han, H.S. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat. Rev. Neurosci. 2012, 13, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, M.; Constantinescu, A.O.; Balseanu, A.; Zagrean, L.; Popa-Wagner, A. Sleep deprivation attenuates experimental stroke severity in rats. Exp. Neurol. 2010, 222, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Buga, A.M.; Margaritescu, C.; Scholz, C.J.; Radu, E.; Zelenak, C.; Popa-Wagner, A. Transcriptomics of post-stroke angiogenesis in the aged brain. Front. Aging Neurosci. 2014, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Zhang, W.; Weng, Z.; Stetler, R.A.; Jiang, X.; Shi, Y.; Gao, Y.; Chen, J. Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke—Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. Aging Dis. 2017, 8, 531–545. [Google Scholar] [PubMed]
- Bregy, A.; Nixon, R.; Lotocki, G.; Alonso, O.F.; Atkins, C.M.; Tsoulfas, P. Posttraumatic hypothermia increases doublecortin expressing neurons in the dentate gyrus after traumatic brain injury in the rat. Exp. Neurol. 2012, 233, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Silasi, G.; Colbourne, F. Therapeutic hypothermia influences cell genesis and survival in the rat hippocampus following global ischemia. J. Cereb. Blood Flow Metab. 2011, 31, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Silasi, G.; Klahr, A.C.; Hackett, M.J.; Auriat, A.M.; Nichol, H.; Colbourne, F. Prolonged therapeutic hypothermia does not adversely impact neuroplasticity after global ischemia in rats. J. Cereb. Blood Flow Metab. 2012, 32, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Enwere, E.; Shingo, T.; Gregg, C.; Fujikawa, H.; Ohta, S.; Weiss, S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J. Neurosci. 2004, 24, 8354–8365. [Google Scholar] [CrossRef] [PubMed]
- Lasarzik, I.; Winkelheide, U.; Thal, S.C.; Benz, N.; Lorscher, M.; Jahn-Eimermacher, A. Mild hypothermia has no long-term impact on postischemic neurogenesis in rats. Anesth. Analg. 2009, 109, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Badan, I.; Platt, D.; Kessler, C.; Popa-Wagner, A. Temporal dynamics of degenerative and regenerative events associated with cerebral ischemia in aged rats. Gerontology 2003, 49, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Petcu, E.B.; Sfredel, V.; Platt, D.; Herndon, J.G.; Kessler, C.; Popa-Wagner, A. Cellular and molecular events underlying the dysregulated response of the aged brain to stroke: A mini-review. Gerontology 2008, 54, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Turtzo, L.C.; Li, J.; Regard, J.; Worley, P.; Zeevi, N.; McCullough, L.D. Loss of vascular early response gene reduces edema formation after experimental stroke. Exp. Transl. Stroke Med. 2012, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Famakin, B.M.; Mou, Y.; Johnson, K.; Spatz, M.; Hallenbeck, J. A new role for downstream Toll-like receptor signaling in mediating immediate early gene expression during focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2014, 34, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Retchkiman, I.; Fischer, B.; Platt, D.; Wagner, A.P. Seizure induced C-Fos mRNA in the rat brain: Comparison between young and aging animals. Neurobiol. Aging 1996, 17, 41–44. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Carmichael, S.T.; Kokaia, Z.; Kessler, C.; Walker, L.C. The response of the aged brain to stroke: Too much, too soon? Curr. Neurovasc. Res. 2007, 4, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Popa-Wagner, A.; Doeppner, T.R.; Hermann, D.M. Stem cell therapies in preclinical models of stroke associated with aging. Front. Cell. Neurosci. 2014, 8, 347. [Google Scholar] [CrossRef] [PubMed]
- Badan, I.; Dinca, I.; Buchhold, B.; Suofu, Y.; Walker, L.; Popa-Wagner, A. Accelerated accumulation of N- and C-terminal βAPP fragments and delayed recovery of MAP1B expression following stroke in aged rats. Eur. J. Neurosci. 2004, 19, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Schmoll, H.; Badan, I.; Walker, L.; Kessler, C.; Popa-Wagner, A. Kindling status in Sprague-Dawley rats induced by pentylenetetrazole: Involvement of a critical development period. Am. J. Pathol. 2003, 162, 1027–1034. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandu, R.E.; Dumbrava, D.; Surugiu, R.; Glavan, D.-G.; Gresita, A.; Petcu, E.B. Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects. Int. J. Mol. Sci. 2018, 19, 99. https://doi.org/10.3390/ijms19010099
Sandu RE, Dumbrava D, Surugiu R, Glavan D-G, Gresita A, Petcu EB. Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects. International Journal of Molecular Sciences. 2018; 19(1):99. https://doi.org/10.3390/ijms19010099
Chicago/Turabian StyleSandu, Raluca Elena, Danut Dumbrava, Roxana Surugiu, Daniela-Gabriela Glavan, Andrei Gresita, and Eugen Bogdan Petcu. 2018. "Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects" International Journal of Molecular Sciences 19, no. 1: 99. https://doi.org/10.3390/ijms19010099
APA StyleSandu, R. E., Dumbrava, D., Surugiu, R., Glavan, D. -G., Gresita, A., & Petcu, E. B. (2018). Cellular and Molecular Mechanisms Underlying Non-Pharmaceutical Ischemic Stroke Therapy in Aged Subjects. International Journal of Molecular Sciences, 19(1), 99. https://doi.org/10.3390/ijms19010099