The Impact of Magnesium–Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-Ray Diffraction
2.2. Fourier Transform Infrared Spectra
2.3. Magnetic Properties
2.4. Thermogravimetric Analyses
2.5. Particle Size Distribution by the Dynamic Light Scattering Technique
2.6. Particle Size Distribution by the Transmission Electron Microscopy Technique
2.7. Loading and Release Behavior of 5-Fluorouracil
2.8. Kinetics of 5-Fluorouracil Release from the Nanoparticles
2.9. In Vitro Bioassay
2.9.1. Cytotoxicity Studies on Normal Fibroblast 3T3 Cells
2.9.2. Anticancer Action against Liver Cancer Cells, HepG2
3. Materials and Methods
3.1. Materials and Method
3.2. Experimental Section
3.3. Instrumentation
3.4. Cell Culture and MTT Cell Viability Assays
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jain, K.K. Role of nanobiotechnology in developing personalized medicine for cancer. Technol. Cancer Res. Treat. 2005, 4, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Sasisekharan, R. Exploiting nanotechnology to target cancer. Br. J. Cancer 2007, 96, 1315. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M.J. Cancer statistics, 2008. CA A Cancer J. Clin. 2008, 58, 71–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.D.; Shin, D.M.; Simons, J.W.; Nie, S. Nanotechnology for targeted cancer therapy. Expert Rev. Anticancer Ther. 2007, 7, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, C.; Zhang, R.; Xu, Z.; Xu, Z.; Whittaker, A.K. Multifunctional magnetized porous silica covered with poly (2-dimethylamino ethyl methacrylate) for pH controllable drug release and magnetic resonance imaging. ACS Appl. Nano Mater. 2018, 1, 5027–5034. [Google Scholar] [CrossRef]
- Hanna, N.; Ansari, R.; Fisher, W.; Shen, J.; Jung, S.-H.; Sandler, A. Etoposide, ifosfamide and cisplatin (VIP) plus concurrent radiation therapy for previously untreated limited small cell lung cancer (SCLC): A Hoosier Oncology Group (HOG) phase II study. Lung Cancer 2002, 35, 293–297. [Google Scholar] [CrossRef]
- Laurent, S.; Mahmoudi, M. Superparamagnetic iron oxide nanoparticles: Promises for diagnosis and treatment of cancer. Int. J. Mol. Epidemiol. Genet. 2011, 2, 367–390. [Google Scholar]
- Abou-Jawde, R.; Choueiri, T.; Alemany, C.; Mekhail, T. An overview of targeted treatments in cancer. Clin. Ther. 2003, 25, 2121–2137. [Google Scholar] [CrossRef]
- Brissette, R.; Prendergast, J.K.; Goldstein, N.I. Identification of cancer targets and therapeutics using phage display. Curr. Opin. Drug Discov. Dev. 2006, 9, 363–369. [Google Scholar]
- Nobs, L.; Buchegger, F.; Gurney, R.; Allémann, E. Poly (lactic acid) nanoparticles labeled with biologically active NeutravidinTM for active targeting. Eur. J. Pharm. Biopharm. 2004, 58, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ehud, G.; Anna, M. Plenty of Room for Biology at the Bottom: An Introduction to Bionanotechnology; World Scientific: Singapore, 2013; ISBN 1848169329. [Google Scholar]
- Samori, B. Plenty of room for biology at the bottom. An introduction to bionanotechnology. Von Ehud Gazit. Angew. Chem. 2008, 120, 242–243. [Google Scholar] [CrossRef]
- Tao, K.; Dou, H.; Sun, K. Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 115–122. [Google Scholar] [CrossRef]
- Szwed, M.; Sønstevold, T.; Øverbye, A.; Engedal, N.; Grallert, B.; Mørch, Ý.; Sulheim, E.; Iversen, T.-G.; Skotland, T.; Sandvig, K. Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology 2019, 13, 761–782. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.-H.; Lim, T.-T.; Dong, Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef]
- Touati, S. Elaboration D’aérogels D’hydroxydes Doubles Lamellaires et de Bionanocomposites à Base D’alginate. Bachelor’s Thesis, Universite Blaise Pascal, Aubière, France, 2013. [Google Scholar]
- Kankala, R.K.; Kuthati, Y.; Sie, H.-W.; Shih, H.-Y.; Lue, S.-I.; Kankala, S.; Jeng, C.-C.; Deng, J.-P.; Weng, C.-F.; Liu, C.-L. Multi-laminated metal hydroxide nanocontainers for oral-specific delivery for bioavailability improvement and treatment of inflammatory paw edema in mice. J. Colloid Interface Sci. 2015, 458, 217–228. [Google Scholar] [CrossRef]
- Ladewig, K.; Niebert, M.; Xu, Z.P.; Gray, P.P.; Lu, G.Q. (Max) Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles. Appl. Clay Sci. 2010, 48, 280–289. [Google Scholar] [CrossRef]
- Ladewig, K.; Xu, Z.P.; Lu, G.Q. Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin. Drug Deliv. 2009, 6, 907–922. [Google Scholar] [CrossRef]
- Li, L.; Gu, W.; Chen, J.; Chen, W.; Xu, Z.P. Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. Biomaterials 2014, 35, 3331–3339. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Xu, Z.; Lu, J.; Tang, Z.; Zhao, H.; Good, D.; Wei, M. Potential for layered double hydroxides-based, innovative drug delivery systems. Int. J. Mol. Sci. 2014, 15, 7409–7428. [Google Scholar] [CrossRef]
- Li, L.; Gu, W.; Liu, J.; Yan, S.; Xu, Z.P. Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. Nano Res. 2015, 8, 682–694. [Google Scholar] [CrossRef]
- Li, L.; Wu, Y.Q.; Sun, K.K.; Zhang, R.; Liang, K.K.; Mao, L.B. Controllable preparation and drug loading properties of CORE-shell microspheres Fe3O4@MOFs/GO. Mater. Lett. 2016, 162, 207–210. [Google Scholar] [CrossRef]
- Yarmohammadi, H.; Gonzalez-Aguirre, A.J.; Maybody, M.; Ziv, E.; Boas, F.E.; Erinjeri, J.P.; Sofocleous, C.T.; Solomon, S.B.; Getrajdman, G. Evaluation of the effect of operator experience on outcome of hepatic artery embolization of hepatocellular carcinoma in a tertiary cancer center. Acad. Radiol. 2018, 25, 856–860. [Google Scholar] [CrossRef]
- Abotaleb, M.; Kubatka, P.; Caprnda, M.; Varghese, E.; Zolakova, B.; Zubor, P.; Opatrilova, R.; Kruzliak, P.; Stefanicka, P.; Büsselberg, D. Chemotherapeutic agents for the treatment of metastatic breast cancer: An update. Biomed. Pharmacother. 2018, 101, 458–477. [Google Scholar] [CrossRef]
- Shayan, K.; Nowroozi, A. Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: A theoretical study. Appl. Surf. Sci. 2018, 428, 500–513. [Google Scholar] [CrossRef]
- Hanjani, M.M.; Ghasemi, E.; Safi, M. Effect of temperature and atmosphere of co-precipitation reaction on the magnetic and colorimetric properties of iron oxide nanoparticles. J. Color Sci. Technol. 2013, 7, 85–92. [Google Scholar]
- Chen, H.; Liu, S.; Li, Y.; Deng, C.; Zhang, X.; Yang, P. Development of oleic acid-functionalized magnetite nanoparticles as hydrophobic probes for concentrating peptides with MALDI-TOF-MS analysis. Proteomics 2011, 11, 890–897. [Google Scholar] [CrossRef]
- Dorniani, D.; Hussein, M.Z.B.; Kura, A.U.; Fakurazi, S.; Shaari, A.H.; Ahmad, Z. Sustained release of perindopril erbumine from its chitosan-coated magnetic nanoparticles for biomedical applications. Int. J. Mol. Sci. 2013, 14, 23639–23653. [Google Scholar] [CrossRef]
- Engin, A.B.; Nikitovic, D.; Neagu, M.; Henrich-noack, P.; Docea, A.O.; Shtilman, M.I.; Golokhvast, K.; Tsatsakis, A.M. Mechanistic understanding of nanoparticles’ interactions with extracellular matrix: The cell and immune system. Part. Fibre Toxicol. 2017, 14, 22. [Google Scholar] [CrossRef]
- Kar, S.; Leszczynski, J. Exploration of computational approaches to predict the toxicity of chemical mixtures. Toxics 2019, 7, 15. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Guo, Y.; Zhang, C.; Zhao, W.; Xu, Z.; Whittaker, A.K. Functional magnetic porous silica for T1–T2 dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs. Nanotechnology 2016, 27, 485702. [Google Scholar] [CrossRef]
- Ahad, N.; Saion, E.; Gharibshahi, E. Structural, thermal, and electrical properties of Pva-sodium salicylate solid composite polymer electrolyte. J. Nanomater. 2012, 2012, 94. [Google Scholar] [CrossRef]
- Mondal, S.; Dasgupta, S.; Maji, K. MgAl—Layered double hydroxide nanoparticles for controlled release of Salicylate. Mater. Sci. Eng. C 2016, 68, 557–564. [Google Scholar] [CrossRef]
- Ikhsani, I.Y.; Santosa, S.J.; Rusdiarso, B. Comparative study of Ni-Zn LHS and Mg-Al LDH adsorbents of navy blue and yellow F3G dye. Indones. J. Chem. 2016, 16, 36–44. [Google Scholar] [CrossRef]
- Tang, C.-M.; Tian, Y.-H.; Hsu, S.-H. Poly (vinyl alcohol) nanocomposites reinforced with bamboo charcoal nanoparticles: Mineralization behavior and characterization. Materials 2015, 8, 4895–4911. [Google Scholar] [CrossRef]
- Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Direct C−H transformation via iron catalysis. Chem. Rev. 2010, 111, 1293–1314. [Google Scholar] [CrossRef]
- Aizawa, M.; Buriak, J.M. Nanoscale patterning of two metals on silicon surfaces using an ABC triblock copolymer template. J. Am. Chem. Soc. 2006, 128, 5877–5886. [Google Scholar] [CrossRef]
- Mansur, H.S.; Sadahira, C.M.; Souza, A.N.; Mansur, A.A.P. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater. Sci. Eng. C 2008, 28, 539–548. [Google Scholar] [CrossRef]
- Anicuta, S.; Dobre, L.; Stroescu, M.; Jipa, I. Fourier transform infrared (FTIR) spectroscopy for characterization of antimicrobial films containing chitosan. In Analele UniversităŃii din Oradea Fascicula: Ecotoxicologie, Zootehnie şi Tehnologii de Industrie Alimentară; University of Oradea Publishing House: Oradea, Romania, 2010; pp. 1234–1240. [Google Scholar]
- Atta, A.M.; El-Mahdy, G.A.; Al-Lohedan, H.A.; Shoueir, K.R. Electrochemical behavior of smart N-isopropyl acrylamide copolymer nanogel on steel for corrosion protection in acidic solution. Int. J. Electrochem. Sci. 2015, 10, 870–882. [Google Scholar]
- Kharazmi, A.; Faraji, N.; Hussin, R.M.; Saion, E.; Yunus, W.M.M.; Behzad, K. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach. Beilstein J. Nanotechnol. 2015, 6, 529–536. [Google Scholar] [CrossRef]
- Sharma, G.; Pethaiyan, J. A thermal decomposition approach for the synthesis of iron oxide microspheres. Mater. Res. Soc. Symp. Proc. 2013, 1547, 155–160. [Google Scholar] [CrossRef]
- Usman, M.S.; Ibrahim, N.A.; Shameli, K.; Zainuddin, N.; Yunus, W.M.Z.W. Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods. Molecules 2012, 17, 14928–14936. [Google Scholar] [CrossRef]
- Raffi, M.; Mehrwan, S.; Bhatti, T.M.; Akhter, J.I.; Hameed, A.; Yawar, W.; ul Hasan, M.M. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 2010, 60, 75–80. [Google Scholar] [CrossRef]
Samples | Ms (emu/g) | Mr (emu/g) | Hci (G) |
---|---|---|---|
FNPs | 80 | 1.448 | 11.53 |
FPVA | 49 | 0.784 | 12.01 |
FPVA-FU-MLDH | 11 | 0.208 | 17.5 |
pH | Saturation Release | R2 | ||||
---|---|---|---|---|---|---|
Pseudo First Order | Pseudo Second Order | Parabolic Diffusion Model | Rate Constant (K) (mg/min) | t1/2 (min) | ||
7.4 | 96% | 0. 7902 | 0.9986 | 0.5024 | 3.4 × 10−5 | 54 |
4.8 | 99% | 0. 9965 | 0.9996 | 0.8633 | 4.4 × 10−4 | 66 |
Cells Type | IC50 (μg/mL) | ||||
---|---|---|---|---|---|
FNPs | FPVA | FPVA-MLDH | 5-fluorouracil | FPVA-FU-MLDH | |
3T3 | NC | NC | NC | NC | NC |
HepG2 | NC | NC | NC | 32.73 | 21.53 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebadi, M.; Buskaran, K.; Saifullah, B.; Fakurazi, S.; Hussein, M.Z. The Impact of Magnesium–Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent. Int. J. Mol. Sci. 2019, 20, 3764. https://doi.org/10.3390/ijms20153764
Ebadi M, Buskaran K, Saifullah B, Fakurazi S, Hussein MZ. The Impact of Magnesium–Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent. International Journal of Molecular Sciences. 2019; 20(15):3764. https://doi.org/10.3390/ijms20153764
Chicago/Turabian StyleEbadi, Mona, Kalaivani Buskaran, Bullo Saifullah, Sharida Fakurazi, and Mohd Zobir Hussein. 2019. "The Impact of Magnesium–Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent" International Journal of Molecular Sciences 20, no. 15: 3764. https://doi.org/10.3390/ijms20153764
APA StyleEbadi, M., Buskaran, K., Saifullah, B., Fakurazi, S., & Hussein, M. Z. (2019). The Impact of Magnesium–Aluminum-Layered Double Hydroxide-Based Polyvinyl Alcohol Coated on Magnetite on the Preparation of Core-Shell Nanoparticles as a Drug Delivery Agent. International Journal of Molecular Sciences, 20(15), 3764. https://doi.org/10.3390/ijms20153764