Melanoma and Vitiligo: In Good Company
Abstract
:1. Introduction
2. Vitiligo and Spontaneous Melanoma-Associated Leukoderma
3. Sutton’s Nevus and Halo Phenomenon in Melanoma Patients
4. Melanoma-Associated Leukoderma as an Adverse Effect of Immunotherapy
4.1. Therapeutic Vaccination
4.2. Check-Point Inhibitors
5. Vitiligo and Biomarkers of Response to Immunotherapy with Checkpoint Inhibitors
6. Uveal Melanoma
7. Melanoma-Associated Leukoderma Beyond Melanoma
8. Additional Autoimmune Skin Diseases in Melanoma Patients Treated with Check-Point Inhibitors
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CTL | cytotoxic T lymphocyte |
CTLA-4 | cytotoxic T lymphocyte antigen-4 |
PD-1 | programmed death 1 receptor |
PD-L1 | programmed death ligand 1 |
irAE | immune related adverse effect |
NSCLC | non-small cell lung cancer |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Persi, E.; Wolf, Y.I.; Leiserson, M.D.M.; Koonin, E.V.; Ruppin, E. Criticality in tumor evolution and clinical outcome. Proc. Natl. Acad. Sci. USA 2018, 115, E11101–E11110. [Google Scholar] [CrossRef] [PubMed]
- Mortarini, R.; Piris, A.; Maurichi, A.; Molla, A.; Bersani, I.; Bono, A.; Bartoli, C.; Santinami, M.; Lombardo, C.; Ravagnani, F.; et al. Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res. 2003, 63, 2535–2545. [Google Scholar]
- Lee, P.P.; Yee, C.; Savage, P.A.; Fong, L.; Brockstedt, D.; Weber, J.S.; Johnson, D.; Swetter, S.; Thompson, J.; Greenberg, P.D.; et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 1999, 5, 677–685. [Google Scholar] [CrossRef]
- Baron, J.; Krol, A. Management of nevi in transplant patients. Dermatol. Ther. 2005, 18, 34–43. [Google Scholar] [CrossRef]
- Zattra, E.; Fortina, A.B.; Bordignon, M.; Piaserico, S.; Alaibac, M. Immunosuppression and melanocyte proliferation. Melanoma Res. 2009, 19, 63–68. [Google Scholar] [CrossRef]
- Motz, G.T.; Coukos, G. Deciphering and reversing tumor immune suppression. Immunity 2013, 39, 61–73. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhan, H. Communication between EMT and PD-L1 signaling: New insights into tumor immune evasion. Cancer Lett. 2020, 468, 72–81. [Google Scholar] [CrossRef]
- Damgaci, S.; Ibrahim-Hashim, A.; Enriquez-Navas, P.M.; Pilon-Thomas, S.; Guvenis, A.; Gillies, R.J. Hypoxia and acidosis: Immune suppressors and therapeutic targets. Immunology 2018, 154, 354–362. [Google Scholar] [CrossRef]
- Balabanov, K.; Andreev, V.C.; Tchernozemski, I. Malignant melanoma and vitiligo. Dermatologica 1969, 139, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Palermo, B.; Campanelli, R.; Garbelli, S.; Mantovani, S.; Lantelme, E.; Brazzelli, V.; Ardigò, M.; Borroni, G.; Martinetti, M.; Badulli, C.; et al. Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: The role of cellular immunity in the etiopathogenesis of vitiligo. J. Invest. Dermatol 2001, 117, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Ezzedine, K.; Hamzavi, I.; Pandya, A.G.; Harris, J.E. Vitiligo Working Group, New discoveries in the pathogenesis and classification of vitiligo. J. Am. Acad. Dermatol. 2017, 77, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Teulings, H.-E.; Willemsen, K.J.; Glykofridis, I.; Krebbers, G.; Komen, L.; Kroon, M.W.; Kemp, E.H.; Wolkerstorfer, A.; Wietze van der Veen, J.P.; Luiten, R.M.; et al. The antibody response against MART-1 differs in patients with melanoma-associated leucoderma and vitiligo. Pigment. Cell Melanoma Res. 2014, 27, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Parmiani, G. Melanoma antigens and their recognition by T. cells. Keio J. Med. 2001, 50, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol. Today 1997, 18, 175–182. [Google Scholar] [CrossRef]
- Jager, E.; Maeurer, M.; Hohn, H.; Karbach, J.; Jager, D.; Zidianakis, Z.; Bakhshandeh-Bath, A.; Orth, J.; Neukirch, C.; Necker, A.; et al. Clonal expansion of Melan A-specific cytotoxic T lymphocytes in a melanoma patient responding to continued immunization with melanoma-associated peptides. Int. J. Cancer 2000, 86, 538–547. [Google Scholar] [CrossRef]
- Yee, C.; Thompson, J.A.; Roche, P.; Byrd, D.R.; Lee, P.P.; Piepkorn, M.; Kenyon, K.; Davis, M.M.; Riddell, S.R.; Greenberg, P.D. Melanocyte destruction after antigen-specific immunotherapy of melanoma: Direct evidence of T cell–mediated vitiligo. J. Exp. Med. 2000, 192, 1637–1644. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Yannelli, J.R.; Yang, J.C.; Topalian, S.L.; Schwartzentruber, D.J.; Weber, J.S.; Parkinson, D.R.; Seipp, C.A.; Einhorn, J.H.; White, D.E. Treatment of Patients With Metastatic Melanoma With Autologous Tumor-Infiltrating Lymphocytes and Interleukin 2. J. Natl. Cancer Inst. 1994, 86, 1159–1166. [Google Scholar] [CrossRef]
- Curti, B.; Daniels, G.A.; McDermott, D.F.; Clark, J.I.; Kaufman, H.L.; Logan, T.F.; Singh, J.; Kaur, M.; Luna, T.L.; Gregory, N.; et al. Improved survival and tumor control with interleukin-2 is associated with the development of immune-related adverse events: Data from the PROCLAIMSM registry. J. Immunother. Cancer 2017, 5, 102. [Google Scholar] [CrossRef]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Herzberg, B.; Fisher, D.E. Metastatic melanoma and immunotherapy. Clin. Immunol. 2016, 172, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzales, R.; Grob, J.J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Dummer, W.R.; Ferrucci, P.F.; et al. Five-year survival with combined nivolumab and ipilimumab in advance melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015, 373, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Boussemart, L.; Mateus, C.; Routier, E.; Boutros, C.; Cazenave, H.; Viollet, R.; Thomas, M.; Roy, S.; Benannoune, N.; et al. Association of vitiligo with tumor response in patients with metastatic melanoma treated with pembrolizumab. JAMA Dermatol. 2016, 152, 45–51. [Google Scholar] [CrossRef]
- Motofei, I.G. Melanoma and autoimmunity: Spontaneous regressions as a possible model for new therapeutic approaches. Melanoma Res. 2019, 29, 231–236. [Google Scholar] [CrossRef]
- Boehncke, W.H.; Brembilla, N.C. Autoreactive T-Lymphocytes in Inflammatory Skin Diseases. Front. Immunol. 2019, 10, 1198. [Google Scholar] [CrossRef]
- Singh, R.K.; Lee, K.M.; Vujkovic-Cvijin, I.; Ucmak, D.; Farahnik, B.; Abrouk, M.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Wei, M.; et al. The role of IL-17 in vitiligo: A review. Autoimmun. Rev. 2016, 15, 397–404. [Google Scholar] [CrossRef]
- Rodrìguez-Cuevas, S.; Lòpez-Chavira, A.; Zepeda del Rio, G.; Cuadra-Garcia, I.; Fernàndez-Diez, J. Prognostic significance of cutaneous depigmentation in Mexican patients with malignant melanoma. Arch. Med. Res. 1998, 29, 155–158. [Google Scholar]
- Arpaia, N.; Cassano, N.; Vena, G.A. Regressing cutaneous malignant melanoma and vitiligo-like depigmentation. Int. J. Dermatol. 2006, 45, 952–956. [Google Scholar] [CrossRef]
- Francisco, G.; Rao, B.K.; Victor, F.C. Two reports of malignant melanoma arising within vitiligo-like depigmented patch. JAAD Case Rep. 2018, 4, 573–575. [Google Scholar] [CrossRef] [PubMed]
- Naveh, H.; Rao, U.N.M.; Butterfield, L.H. Melanoma-associated leukoderma-immunology in black and white? Pigment. Cell Melanoma Res. 2013, 26, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.D.; Oussedik, E.; Schoch, J.J.; Berger, A.C.; Picardo, M. Acquired disorders with depigmentation: A systematic approach to vitiliginoid conditions. J. Am. Acad. Dermatol. 2019, 80, 1215–1231. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Bedek, C.; Keikavoussi, P.; Becker, J.C.; Hamm, H.; Brocker, E.B. Vitiligo and melanoma-associated hypopigmentation (MAH): Shared and discriminative features. J. Dtsch. Dermatol. Ges. 2008, 6, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
- Lommerts, J.E.; Teulings, H.-E.; Ezzedine, K.; van Geel, N.; Hartmann, A.; Speeckaert, R.; Spuls, P.I.; Wolkerstorfer, A.; Luiten, R.M.; Bekkenk, M.W. Melanoma-associated leukoderma and vitiligo cannot be differentiated based on blinded assessment by experts in the field. J. Am. Acad. Dermatol. 2016, 75, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Bystryn, J.C. Melanoma and vitiligo are associated with antibody responses to similar antigens on pigment cells. Arch. Dermatol. 1995, 131, 314–318. [Google Scholar] [CrossRef]
- Fishman, P.; Azizi, E.; Shoenfeld, Y.; Sredni, B.; Yecheskel, G.; Ferrone, S.; Zigelman, R.; Chaitchik, S.; Floro, S.; Djaldetti, M. Vitiligo autoantibodies are effective against melanoma. Cancer 1993, 72, 2365–2369. [Google Scholar] [CrossRef]
- Merimsky, O.; Shoenfeld, Y.; Fishman, P. The clinical significance of antityrosinase antibodies in melanoma and related hypopigmentary lesions. Clin. Rev. Allergy Immunol. 1998, 16, 227–236. [Google Scholar] [CrossRef]
- Becker, J.C.; Guldberg, P.; Zeuthen, J.; Bröcker, E.B.; Straten, P.T. Accumulation of identical T cells in melanoma and vitiligo-like leukoderma. J. Invest. Dermatol. 1999, 113, 1033–1038. [Google Scholar] [CrossRef]
- Palermo, B.; Garbelli, S.; Mantovani, S.; Scoccia, E.; Da Prada, G.; Bernabei, P.; Avanzini, M.; Brazzelli, V.; Borroni, G.; Giachino, C. Qualitative difference between the cytotoxic T Lymphocyte responses to melanocyte antigens in melanoma and vitiligo. Eur. J. Immunol. 2005, 35, 3153–3162. [Google Scholar] [CrossRef]
- Lili, Y.; Yi, W.; Ji, Y.; Yue, S.; Weimin, S.; Ming, L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS ONE 2012, 7, e37513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lengagne, R.; Le Gal, F.A.; Garcette, M.; Fiette, L.; Ave, P.; Kato, M.; Briand, J.P.; Massot, C.; Nakashima, I.; Rénia, L.; et al. Spontaneous vitiligo in an animal model for human melanoma: Role of tumor-specific CD8+ T cells. Cancer Res. 2004, 64, 1496–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Perry, C.J.; Meeth, K.; Thakral, D.; Damsky, W.; Micevic, G.; Kaech, S.; Blenman, K.; Bosenberg, M. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment. Cell Melanoma Res. 2017, 30, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Blenman, K.R.M.; Wang, J.D.; Cowper, S.; Bosenberg, M. Pathology of spontaneous and immunotherapy-induced tumor regression in a murine model of melanoma. Pigment. Cell Melanoma Res. 2019, 32, 448–457. [Google Scholar] [CrossRef]
- Byrne, K.T.; Cote, A.L.; Zhang, P.J.; Steinberg, S.M.; Guo, Y.; Allie, R.; Zhang, W.; Ernstoff, M.S.; Usherwood, E.J.; Turk, M.J. Autoimmune melanocyte destruction is required for robust CD8+ memory T cell responses to mouse melanoma. J. Clin. Invest. 2011, 121, 1797–1809. [Google Scholar] [CrossRef] [Green Version]
- Weyant, G.W.; Chung, C.G.; Helm, K.F. Halo nevus: Review of the literature and clinicopathologic findings. Int. J. Dermatol. 2015, 54, e433–e435. [Google Scholar] [CrossRef]
- Patrizi, A.; Bentivogli, M.; Raone, B.; Dondi, A.; Tabanelli, M.; Neri, I. Association of halo/nevus/i and vitiligo in childhood: A retrospective observational study. J. Eur. Acad. Dermatol. Venereol. 2013, 27, e148–e152. [Google Scholar] [CrossRef]
- Yang, Y.; Li, S.; Zhu, G.; Zhang, Q.; Wang, G.; Gao, T.; Li, C.; Wang, L.; Jian, Z. A similar local immune and oxidative stress phenotype in vitiligo and halo nevus. J. Dermatol. Sci. 2017, 87, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Vyas, R.; Selph, J.; Gerstenblith, M.R. Cutaneous manifestations associated with melanoma. Semin. Oncol. 2016, 43, 384–389. [Google Scholar] [CrossRef]
- Epstein, W.L.; Sagebeil, R.; Spitler, L.; Wybran, J.; Reed, W.B.; Blois, M.S. Halo Nevi and Melanoma. JAMA 1973, 225, 373–377. [Google Scholar] [CrossRef]
- Quaglino, P.; Marenco, F.; Osella-Abate, S.; Cappello, N.; Ortoncelli, M.; Salomona, B.; Fierro, M.T.; Savoia, P.; Bernengo, M.G. Vitiligo is an independent favourable prognostic factor in stage III and IV metastatic melanoma patients: Results from a single-institution hospital-based observational cohort study. Ann. Oncol. 2010, 21, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Moretti, S.; Spallanzani, A.; Pinzi, C.; Prignano, F.; Fabbri, P. Fibrosis in regressing melanoma versus nonfibrosis in halo nevus upon melanocyte disappearance: Could it be related to a different cytokine microenvironment? J. Cutan. Pathol. 2007, 34, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, A.; Felsten, L.M.; Daly, M.; Petronic-Rosic, V. Vitiligo: A comprehensive overview. J. Am. Acad. Dermatol. 2011, 65, 473–491. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, R.I.; Zurac, S.A.; Brinzea, A.; CIioplea, M.-D.; Turcu, G.; Popescu, R.; Popescu, C.-M.; Ion, D.A. Morphological features of melanocytic tumors with depigmented halo: Review of the literature and personal results. Rom. J. Morphol. Embryol. 2015, 56, 659–663. [Google Scholar]
- Fu, Q.; Chen, N.; Ge, C.; Li, R.; Li, Z.; Zeng, B.; Li, C.; Wang, Y.; Xue, Y.; Song, X.; et al. Prognostic value of tumor-infitrating lymphocytes in melanoma: A systematic review and meta-analysis. Oncoimmunology 2019, 8, e1593806. [Google Scholar] [CrossRef] [Green Version]
- Anichini, A.; Molla, A.; Mortarini, R.; Tragni, G.; Bersani, I.; Di Nicola, M.; Gianni, A.M.; Pilotti, S.; Dunbar, R.; Cerundolo, V.; et al. An expanded peripheral T cell population to a cytotoxic T lymphocyte (CTL)-defined, melanoma-specific antigen in metastatic melanomapatients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J. Exp. Med. 1999, 190, 651–667. [Google Scholar]
- Rivoltini, L.; Carrabba, M.; Huber, V.; Castelli, C.; Novellino, L.; Dalerba, P.; Mortarini, R.; Arancia, G.; Anichini, A.; Fais, S.; et al. Immunity to cancer: Attack and escape in T lymphocyte-tumor cell interaction. Immunol. Rev. 2002, 188, 97–113. [Google Scholar] [CrossRef]
- Thurner, B.; Haendle, I.; Röder, C.; Dieckmann, D.; Keikavoussi, P.; Jonuleit, H.; Bender, A.; Maczek, C.; Schreiner, D.; von den Driesch, P.; et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 1999, 190, 1669–1678. [Google Scholar] [CrossRef] [Green Version]
- Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaabinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Lie, W.R.; Hildebrand, W.H.; Mardis, E.R.; et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015, 348, 803–808. [Google Scholar] [CrossRef] [Green Version]
- Dillman, R.O.; Cornforth, A.N.; McClay, E.F.; Depriest, C. Patient-specific dendritic cell vaccines with autologous tumor antigens in 72 patients with metastatic melanoma. Melanoma Manag. 2019, 6, MMT20. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Chen, D.; Misfeldt, M.L.; Swinfard, R.W.; Bystryn, J.C. Antimelanoma antibodies in swine with spontaneously regressing melanoma. Pigment. Cell Res. 1995, 8, 60–63. [Google Scholar] [CrossRef]
- Hara, I.; Takechi, Y.; Houghton, A.N. Implicating a role for immune recognition of self in tumor rejection: Passive immunization against the brown locus protein. J. Exp. Med. 1995, 182, 1609–1614. [Google Scholar] [CrossRef]
- Zhang, P.; Côté, A.L.; de Vries, V.C.; Usherwood, E.J.; Turk, M.J. Induction of postsurgical tumor immunity and T-cell memory by a poorly immunogenic tumor. Cancer Res. 2007, 67, 6468–6476. [Google Scholar] [CrossRef] [Green Version]
- Belum, V.R.; Benhuri, B.; Postow, M.A.; Hellmann, M.D.; Lesokhin, A.M.; Segal, N.H.; Motzer, R.J.; Wu, S.; Busam, K.J.; Wolchok, J.D.; et al. Characterisation and management of dermatologic adverse events to agents targeting the PD-1 receptor. Eur. J. Cancer 2016, 60, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.J.E.; Park, J.J.W.; Wakade, D.; Chou, S.; Byth, K.; Fernandez-Penas, P. Cutaneous adverse events of anti-programmed death 1 antibodies combined with anti-cytotoxic T-lymphocyte-associated protein 4 therapy use in patients with metastatic melanoma. Melanoma Res. 2019, 29, 172–177. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tanaka, R.; Asami, Y.; Teramoto, Y.; Imamura, T.; Sato, S.; Maruyama, H.; Fujisawa, Y.; Matsuya, T.; Fujimoto, M.; et al. Correlation between vitiligo occurrence and clinical benefit in advanced melanoma patients treated with nivolumab: A multi-institutional retrospective study. J. Dermatol. 2017, 44, 117–122. [Google Scholar] [CrossRef]
- Teulings, H.E.; Limpens, J.; Jansen, S.N.; Zwinderman, A.H.; Reitsma, J.B.; Spuls, P.I.; Luiten, R.M. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: A systematic review and meta-analysis. J. Clin. Oncol. 2015, 33, 773–781. [Google Scholar] [CrossRef]
- Indini, A.; Di Guardo, L.; Cimminiello, C.; Prisciandaro, M.; Randon, G.; De Braud, F.; Del Vecchio, M. Immune-related adverse events correlate with improved survival in patients undergoing anti-PD1 immunotherapy for metastatic melanoma. J. Cancer Res. Clin. Oncol. 2019, 145, 511–521. [Google Scholar] [CrossRef]
- Burillo-Martinez, S.; Morales-Raya, C.; Prieto-Barrios, M.; Rodriguez-Peralto, J.L.; Ortiz-Romero, P.L. Pembrolizumab-Induced Extensive Panniculitis and Nevus Regression: Two Novel Cutaneous Manifestations of the Post-immunotherapy Granulomatous Reactions Spectrum. JAMA Dermatol. 2017, 153, 721–722. [Google Scholar] [CrossRef]
- Plaquevent, M.; Greliak, A.; Pinard, C.; Duval-Modeste, A.B.; Joly, P. Simultaneous long-lasting regression of multiple nevi and melanoma metastases after ipilimumab therapy. Melanoma Res. 2019, 29, 311–312. [Google Scholar] [CrossRef]
- Nakamura, Y.; Fujino, T.; Kagamu, H.; Matsuya, T.; Teramoto, Y.; Asami, Y.; Yamamoto, A. Induction of Immune Reaction in Benign Melanocytic Nevi Without Halo During Nivolumab Therapy in a Patient With Melanoma. JAMA Dermatol. 2017, 153, 832–834. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, F.; Mangana, J.; Dummer, R. Hair Depigmentation and Hair Loss in Advanced Melanoma Treated with Combined Immunotherapy and Targeted Therapy. Acta. Derm. Venereol. 2019. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freites-Martinez, A.; Shapiro, J.; Goldfarb, S.; Nangia, J.; Jimenez, J.J.; Paus, R.; Lacouture, M.E. Hair disorders in patients with cancer. J. Am. Acad. Dermatol. 2019, 80, 1179–1196. [Google Scholar] [CrossRef]
- Hofmann, L.; Forschner, A.; Loquai, C.; Goldinger, S.M.; Zimmer, L.; Ugurel, S.; Schmidgen, M.I.; Gutzmer, R.; Utikal, J.S.; Göppner, D.; et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur. J. Cancer 2016, 60, 190–209. [Google Scholar] [CrossRef]
- Yeh, S.; Karne, N.K.; Kerkar, S.P.; Heller, C.K.; Palmer, D.C.; Johnson, L.A.; Li, Z.; Bishop, R.J.; Wong, W.T.; Sherry, R.M.; et al. Ocular and systemic autoimmunity after successful tumor-infiltrating lymphocyte immunotherapy for recurrent, metastatic melanoma. Ophthalmology 2009, 116, 981–989. [Google Scholar] [CrossRef] [Green Version]
- Mihailovic, N.; Dyballa, J.; Herz, S.; Fluck, M.; Alnawaiseh, M.; Merté, R.L.; Nicole, E. Vogt-Koyanagi-Harada-like uveitis under immune checkpoint inhibitor treatment for metastasized malignant melanoma. Ophthalmologe 2019, 5. [Google Scholar] [CrossRef]
- Nakamura, Y.; Teramoto, Y.; Asami, Y.; Matsuya, T.; Adachi, J.I.; Nishikawa, R.; Yamamoto, A. Nivolumab Therapy for Treatment-Related Vitiligo in a Patient With Relapsed Metastatic Melanoma. JAMA Dermatol. 2017, 153, 942–944. [Google Scholar] [CrossRef]
- Malik, B.T.; Byrne, K.T.; Vella, J.L.; Zhang, P.; Shabaneh, T.B.; Steinberg, S.M.; Molodtsov, A.K.; Bowers, J.S.; Angeles, C.V.; Paulos, C.M.; et al. Resident memory T cells in the skin mediate durable immunity to melanoma. Sci. Immunol. 2017, 2, eaam6346. [Google Scholar] [CrossRef] [Green Version]
- Larsabal, M.; Marti, A.; Jacquemin, C.; Rambert, J.; Thiolat, D.; Dousset, L.; Taieb, A.; Dutriaux, C.; Prey, S.; Boniface, K.; et al. Vitiligo-like lesions occurring in patients receiving anti-programmed cell death-1 therapies are clinically and biologically distinct from vitiligo. J. Am. Acad. Dermatol. 2017, 76, 863–870. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, Q.Q.; Wu, J.Q.; Jiang, M.; Chen, L.; Zhang, C.F.; Xiang, L.H. Increased expression of CXCR3 and its ligands in patients with vitiligo and CXCL10 as a potential clinical marker for vitiligo. Br. J. Dermatol. 2016, 174, 1318–1326. [Google Scholar] [CrossRef]
- Pantuck, M.; McDermott, D.; Drakaki, A. To treat or not to treat: Patient exclusion in immune oncology clinical trials due to preexisting autoimmune disease. Cancer 2019, 125, 3506–3513. [Google Scholar] [CrossRef]
- Axelrod, M.L.; Johnson, D.B.; Balko, J.M. Emerging biomarkers for cancer immunotherapy in melanoma. Sem. Cancer Biol. 2018, 52, 207–215. [Google Scholar] [CrossRef]
- Buder-Bakhaya, K.; Hassel, J.C. Biomarkers for clinical benefit of immune checkpoint inhibitor treatment—A review from the melanoma perspective and beyond. Front. Immunol. 2018, 9, 1474. [Google Scholar] [CrossRef]
- Otoshi, T.; Nagano, T.; Tachihara, M.; Nishimura, Y. Possible biomarkers for cancer immunotherapy. Cancer 2019, 11, 935. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, P.F.; Ascierto, P.A.; Pigozzo, J.; Del Vecchio, M.; Maio, M.; Antonini Cappellini, G.C.; Guidoboni, M.; Queirolo, P.; Savoia, P.; Mandalà, M.; et al. Baseline neutrophils and derived neutrophil-to-lymphocyte ratio: Prognostic relevance in metastatic melanoma patients receiving ipilimumab. Ann. Oncol. 2016, 27, 732–738. [Google Scholar] [CrossRef]
- Solak, B.; Dikicier, B.S.; Cosansu, N.C.; Erdem, T. Neutrophil to lymphocyte ratio in patients with vitiligo. Adv. Dermatol. Allergol. 2017, 34, 468–470. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Huang, A.C.; Zhang, W.; Zhang, G.; Wu, M.; Xu, W.; Yu, Z.; Yang, J.; Wang, B.; Sun, H.; et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018, 560, 382–386. [Google Scholar] [CrossRef]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef]
- Rahimi, A.; Hossein-Nataj, H.; Hajheydari, Z.; Aryanian, Z.; Shayannia, A.; Ajami, A.; Asgarian-Omran, H. Expression analysis of PD-1 and Tim-3 immune checkpoint receptors in patients with vitiligo; positive association with disease activity. Exp. Dermatol. 2019, 28, 674–681. [Google Scholar] [CrossRef]
- Ji, R.R.; Chasalow, S.D.; Wang, L.; Hamid, O.; Schmidt, H.; Cogswell, J.; Alaparthy, S.; Berman, D.; Jure-Kunkel, M.; Siemers, N.O.; et al. An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol. Immunother 2012, 61, 1019–1031. [Google Scholar] [CrossRef]
- Speeckaert, R.; Speeckaert, M.; De Schepper, S.; Van Geel, N. Biomarkers of disease activity in vitiligo: A systematic review. Autoimmunity Rev. 2017, 16, 937–945. [Google Scholar] [CrossRef]
- Zaretsky, J.M.; Garcia-Diaz, A.; Shin, D.S.; Escuin-Ordinas, H.; Hugo, W.; Hu-Lieskovan, S.; Torrejon, D.Y.; Abril-Rodriguez, G.; Sandoval, S.; Barthly, L.; et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N. Engl. J. Med. 2016, 375, 819829. [Google Scholar] [CrossRef]
- Samaka, R.M.; Basha, M.A.; Menesy, D. Role of Janus kinase I and signal transduce and activator of transcription 3 in vitiligo. Clin. Cosmet. Invest. Dermatol. 2019, 12, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Daud, A.I.; Loo, K.; Pauli, M.L.; Sanchez-Rodriguez, R.; Sandoval, P.M.; Taravati, K.; Tsai, K.; Nosrati, A.; Nardo, L.; Alvarado, M.D.; et al. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 2016, 126, 3447–3452. [Google Scholar] [CrossRef]
- Queirolo, P.; Dozin, B.; Morabito, A.; Banelli, B.; Piccioli, P.; Fava, C.; Leo, C.; Carosio, R.; Laurent, S.; Fontana, V.; et al. Association of CTLA-4 Gene Variants with Response to Therapy and Long-term Survival in Metastatic Melanoma Patients Treated with Ipilimumab: An Italian Melanoma Intergroup Study. Front. Immunol. 2017, 8, 386. [Google Scholar] [CrossRef] [Green Version]
- Spritz, R.A.; Andersen, G.H. Genetics of Vitiligo. Dermatol. Clin. 2017, 35, 245–255. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Le Poole, I.C.; Sarangarajan, R.; Zhao, Y.; Stennett, L.S.; Brown, T.L.; Sheth, P.; Miki, T.; Boissy, R.E. ‘VIT1′, a novel gene associated with vitiligo. Pigment. Cell Res. 2001, 14, 475–484. [Google Scholar] [CrossRef]
- Rahner, N.; Höefler, G.; Högenauer, C.; Lackner, C.; Steinke, V.; Sengteller, M.; Friedl, W.; Aretz, S.; Propping, P.; Mangold, E.; et al. Compound heterozygosity for two MSH6 mutations in a patient with early onset colorectal cancer, vitiligo and systemic lupus erythematosus. Am. J. Med. Genet. A 2008, 146, 1314–1319. [Google Scholar] [CrossRef]
- Huber, V.; Vallacchi, V.; Fleming, V.; Hu, X.; Cova, A.; Dugo, M.; Shahaj, E.; Sulsenti, R.; Vergani, E.; Filipazzi, P.; et al. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest. 2018, 128, 5505–5516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šahmatova, L.; Tankov, S.; Prans, E.; Aab, A.; Hermann, H.; Reemann, P.; Pihlap, M.; Karelson, M.; Abram, K.; Kisand, K.; et al. MicroRNA-155 is Dysregulated in the Skin of Patients with Vitiligo and Inhibits Melanogenesis-associated Genes in Melanocytes and Keratinocytes. Acta. Derm. Venereol. 2016, 96, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.L.; Weiland, M.; Li, J.; Hamzavi, I.; Henderson, M.; Huggins, R.H.; Mahmoud, B.H.; Agbai, O.; Mi, X.; Dong, Z.; et al. MicroRNA expression profiling identifies potential serum biomarkers for non-segmental vitiligo. Pigment. Cell Melanoma Res. 2013, 26, 418–421. [Google Scholar] [CrossRef]
- Vaish, U.; Kumar, A.A.; Varshney, S.; Ghosh, S.; Sengupta, S.; Sood, C.; Kar, H.K.; Sharma, P.; Natarajan, V.T.; Gokhale, R.S.; et al. Micro RNAs upregulated in vitiligo skin play an important role in its aetiopathogenesis by altering TRP-1 expression and keratinocyte-melanocytes cross-talk. Sci. Rep. 2019, 9, 10079. [Google Scholar] [CrossRef]
- Karachaliou, N.; Gonzalez-Cao, M.; Crespo, G.; Drozdowskyj, A.; Aldeguer, E.; Gimenez-Capitan, A.; Teixido, C.; Molina-Vila, M.A.; Viteri, S.; De Los Llanos Gil, M.; et al. Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients. Ther. Adv. Med. Oncol. 2018, 10, 1–23. [Google Scholar] [CrossRef]
- Elia, G. MIG Th1 chemokine in vitiligo. Clin. Ter. 2018, 169, e303–e307. [Google Scholar]
- Relke, N.; Gooderham, M. The use of Janus kinase inhibitors in vitiligo: A review of the literature. J. Cut. Med. Surg. 2019, 23, 298–306. [Google Scholar] [CrossRef]
- Fishel, R. Mismatch repair. J. Biol. Chem. 2015, 290, 26395–26403. [Google Scholar] [CrossRef] [Green Version]
- Richman, S. Deficient mismatch repair: Read all about it (Review). Int. J. Oncol. 2015, 47, 1189–1202. [Google Scholar] [CrossRef]
- Lee, V.; Murphy, A.; Le, D.T.; Diaz, L.A.J. Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist 2016, 21, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.L.; Weiland, M.; Lim, H.W.; Mi, Q.S.; Zhou, L. Serum miRNA expression profiles change in autoimmune vitiligo in mice. Exp. Dermatol. 2014, 23, 140–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruksha, T.G.; Komina, A.V.; Palkina, N.V. MicroRNA in skin diseases. Eur. J. Dermatol. 2017, 27, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, R.D.; Schwartz, G.K.; Tezel, T.; Marr, B.; Francis, J.H.; Nathan, P.D. Metastatic disease from uveal melanoma: Treatment options and future prospects. Br. J. Ophthalmol. 2017, 101, 38–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaliki, S.; Shields, C.L. Uveal melanoma: Relatively rare but deadly cancer. Eye 2017, 31, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Jindal, V. Role of immune checkpoint inhibitors and novel immunotherapies in uveal melanoma. Chin. Clin. Oncol. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Schank, T.E.; Hassel, J.C. Immunotherapies for the treatment of uveal melanoma-history and future. Cancers 2019, 11, 1048. [Google Scholar] [CrossRef] [Green Version]
- Zimmer, L.; Vaubel, J.; Mohr, P.; Hauschild, A.; Utikal, J.S.; Simon, J.; Garbe, C.; Herbst, R.; Enk, A.; Kampgen, E.; et al. Phase II DeCOG-study of ipilimumab in pretreated and treatment-naive patients with metastatic uveal melanoma. PLoS ONE 2015, 10, e0118564. [Google Scholar] [CrossRef]
- Algazi, A.P.; Tsai, K.K.; Shoushtari, A.N.; Munhoz, R.R.; Eroglu, Z.; Piulats, J.M.; Ott, P.A.; Johnson, D.B.; Hwang, J.; Daud, A.I.; et al. Clinical outcomes in metastatic uveal melanoma treated with PD-1 and PD-L1 antibodies. Cancer 2016, 122, 3344–3353. [Google Scholar] [CrossRef]
- Heppt, M.V.; Heinzerling, L.; Kähler, K.C.; Forschner, A.; Kirchberger, M.C.; Loquai, C.; Meissner, M.; Meier, F.; Terheyden, P.; Schell, B.; et al. Prognostic factors and outcomes in metastatic uveal melanoma treated with programmed cell death-1 or combined PD-1/cytotoxic T-lymphocyte antigen-4 inhibition. Eur. J. Cancer 2017, 82, 56–65. [Google Scholar] [CrossRef]
- Rapisuwon, S.; Izar, B.; Batenchuk, C.; Avila, A.; Mei, S.; Sorger, P.; Parks, J.M.; Cooper, S.J.; Wagner, D.; Zeck, J.C.; et al. Exceptional response and multisystem autoimmune-like toxicities associated with the same T cell clone in a patient with uveal melanoma treated with immune checkpoint inhibitors. J. Immunother Cancer 2019, 7, 61. [Google Scholar] [CrossRef]
- Fountain, E.; Bassett, R.L.; Cain, S.; Posada, L.; Gombos, D.S.; Hwu, P.; Bedikian, A.; Patel, S.P. Adjuvant Ipilimumab in High-Risk Uveal Melanoma. Cancers 2019, 11, 152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, J.; Chehrazi-Raffle, A.; Reddi, S.; Salgia, R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J. Immunother. Cancer 2018, 6, e8. [Google Scholar] [CrossRef] [PubMed]
- Spain, L.; Diem, S.; Larkin, J. Management of toxicities of immune checkpoint inhibitors. Cancer Treat. Rev. 2016, 44, 51–60. [Google Scholar] [CrossRef]
- Zarogoulidis, P.; Huang, H.; Tsiouda, T.; Sardeli, C.; Trakada, G.; Veletza, L.; Kallianos, A.; Kosmidis, C.; Rapti, A.; Papaemmanouil, L.; et al. Immunotherapy “Shock” with vitiligo due to nivolumab administration as third line therapy in lung adenocarcinoma. Respir Med. Case Rep. 2017, 22, 283–286. [Google Scholar] [CrossRef]
- Kosche, C.; Mohindra, N.; Choi, J.N. Vitiligo in a patient undergoing nivolumab treatment for non-small cell lung cancer. JAAD Case Rep. 2018, 4, 1042–1044. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.C.; Consuegra, G.; Chou, S.; Fernandez Peñas, P. Vitiligo-like depigmentation in oncology patients treated with immunotherapies for nonmelanoma metastatic cancers. Clin. Exp. Dermatol. 2019, 44, 643–646. [Google Scholar] [CrossRef]
- Lolli, C.; Medri, M.; Ricci, M.; Schepisi, G.; Filograna, A.; De Giorgi, U.; Stanganelli, I. Vitiligo-like lesions in a patient treated with nivolumab for renal cell carcinoma. Medicine 2018, 97, e13810. [Google Scholar] [CrossRef]
- Pasquali, S.; Hadjinicolaou, A.V.; Chiarion Sileni, V.; Rossi, C.R.; Mocellin, S. Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst. Rev. 2018, 2, CD011123. [Google Scholar] [CrossRef]
- Ohtsuka, M.; Miura, T.; Mori, T.; Ishikawa, M.; Yamamoto, T. Occurence of psoriasiform eruption during nivolumab therapy for primary oral mucosal melanoma. JAMA Dermatol. 2015, 151, 797–799. [Google Scholar] [CrossRef] [Green Version]
- Totonchy, M.B.; Ezaldein, H.H.; Ko, C.J.; Choi, J.N. Inverse psoriasiform eruption during pembrolizumab therapy for metastatic melanoma. JAMA Dermatol. 2016, 152, 590–592. [Google Scholar] [CrossRef]
- Kato, Y.; Otsuka, A.; Miyachi, Y.; Kabashima, K. Exacerbation of psoriasis vulgaris during nivolumab for oral mucosal melanoma. J. Eur. Acad. Dermatol. Venereol. 2016, 30, e29–e108. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, N.; Ohtsuka, M.; Kikuchi, N.; Yamamoto, T. Exacerbation of psoriasis during nivolumab therapy for metastatic melanoma. Acta Derm. Venereol. 2016, 96, 259–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phadke, S.D.; Ghabour, R.; Swick, B.L.; Swenson, A.; Milhem, M.; Zakharia, Y. Pembrolizumab therapy triggering an exacerbation of preexisting autoimmune disease: A report of 2 patients cases. J. Invest. Med. High. Impact Case Rep. 2016, 4, 2324709616674316. [Google Scholar] [CrossRef] [PubMed]
- Bonigen, J.; Raynaud-Donzel, C.; Hureaux, J.; Kramkimel, N.; Blom, A.; Jeudy, G.; Breton, A.L.; Hubiche, T.; Bedane, C.; Legoupil, D.; et al. Anti-PD1-induced psoriasis: A study of 21 patients. J. Eur. Acad. Dermatol. Venereol. 2016, 31, e254. [Google Scholar] [CrossRef] [PubMed]
- Voudouri, D.; Nikolaou, V.; Laschos, K.; Charpidou, A.; Soupos, N.; Triantafyllopoulou, I.; Panoutsopoulou, I.; Aravantinos, G.; Syrigos, K.; Stratigos, A. Anti-PD1/PDL1 induced psoriasis. Curr. Probl. Cancer 2017, 41, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Schmidgen, M.I.; Butsch, F.; Schadmand-Fischer, S.; Steinbrik, K.; Grabbe, S.; Weidenthaler-Barth, B.; Loquai, C. Pembrolizumab-induced lichen planus pemphigoides in a patient with metastatic melanoma. J. Dtsch. Dermatol. Ges. 2017, 15, 742–745. [Google Scholar] [CrossRef]
- Mochel, M.C.; Ming, M.E.; Imadojemu, S.; Gangadhar, T.C.; Schuchter, L.M.; Elenitsas, R.; Payne, A.S.; Chu, E.Y. Cutaneous autoimmune effects in the setting of therapeutic immune checkpoint inhibition for metastatic melanoma. J. Cutan. Pathol. 2016, 43, 787–791. [Google Scholar] [CrossRef]
- Carlos, G.; Anforth, R.; Chou, S.; Clements, A.; Fernandez Peñas, P. A case of bullous pemphigoid in a patient with metastatic melanoma treated with pembrolizumab. Melanoma Res. 2015, 25, 265–268. [Google Scholar] [CrossRef]
- Hwang, S.J.E.; Carlos, G.; Chou, S.; Wakade, D.; Carlino, M.S.; Fernandez-Penas, P. Bullous pemphigoid, an autoantibody-mediated disease, is a novel immune-related adverse event in patients treated with anti-programmed cell death 1 antibodies. Melanoma Res. 2016, 26, 413–416. [Google Scholar] [CrossRef]
- Strickley, J.D.; Vence, L.M.; Burton, S.K.; Callen, J.P. Nivolumab-induced Lichen Planus Pemphigoides. Cutis 2019, 103, 224–226. [Google Scholar]
- Lopez, A.T.; Geskin, L. A case of nivolumab-induced Bullous Pemphigoid: Review of dermatologic toxicity associated with programmed cell death protein-1/programmed death ligand-1 inhibitors and reccomendations for diagnosis and management. Oncologist 2018, 23, 1119–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biomarker | Immunotherapy | Vitiligo |
---|---|---|
NLR | High NLR positively associates with response [85]. | High NLR in patients with generalized disease [86]. |
PD-1/PD-L1 | Expression of PD-L1 positively correlates with response [87,88,89]. | High levels of PD-1 on CD8+ T cells positively associate with disease activity [90]. |
IFN-γ and IFN-related genes | Expression of CXCL-9, CXCL-10, CXCL-11 in the tumor microenvironment positively correlates with response [91]. | High serum levels of CXCL-9 and CXCL-10 indicate vitiligo active phase [92]. |
Janus kinase (JAK)/signal transducers and activators of transcription (STAT) | JAK mutations are related to resistance to immunotherapy [93]. | JAKs and STATs are over-expressed in vitiligo [94]. |
CTLA-4 | High pretreatment expression of CTLA-4 in tumor tissue [88] or in tumor-infiltrating lymphocytes [95] positively correlates with response. Polymorphisms in the CTLA-4 gene are associated with response [96]. | Polymorphisms in CTLA-4 gene are involved in vitiligo development [97]. |
Mismatch repair (MMR) | MMR deficiency positively correlates with response [98]. | Vitiligo has been documented in patients with MMR defects [99,100]. |
microRNAs (miRNAs) | miR-146a, miR-155, miR-125b, miR-100, miR-let-7e, miR-125a, miR-146b, and miR-99b up-regulation predicts resistance to immunotherapy [101]. | miR-155, miR-125b, and miR-let-7e are up-regulated in vitiligo [102,103,104]. |
UVEAL | CUTANEOUS |
---|---|
606 cases/year in Europe | 100,000 cases/year in Europe |
Mainly liver metastasis | Metastasis in various organs |
GNAQ or GNA11 gene mutations | BRAF or NRAS gene mutations |
Monosomy 3 in 50% of tumors | Monosomy 3 rarely occurring |
0.8–5% positive responsiveness to immunotherapy | 20–60% positive responsiveness to immunotherapy |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Failla, C.M.; Carbone, M.L.; Fortes, C.; Pagnanelli, G.; D’Atri, S. Melanoma and Vitiligo: In Good Company. Int. J. Mol. Sci. 2019, 20, 5731. https://doi.org/10.3390/ijms20225731
Failla CM, Carbone ML, Fortes C, Pagnanelli G, D’Atri S. Melanoma and Vitiligo: In Good Company. International Journal of Molecular Sciences. 2019; 20(22):5731. https://doi.org/10.3390/ijms20225731
Chicago/Turabian StyleFailla, Cristina Maria, Maria Luigia Carbone, Cristina Fortes, Gianluca Pagnanelli, and Stefania D’Atri. 2019. "Melanoma and Vitiligo: In Good Company" International Journal of Molecular Sciences 20, no. 22: 5731. https://doi.org/10.3390/ijms20225731
APA StyleFailla, C. M., Carbone, M. L., Fortes, C., Pagnanelli, G., & D’Atri, S. (2019). Melanoma and Vitiligo: In Good Company. International Journal of Molecular Sciences, 20(22), 5731. https://doi.org/10.3390/ijms20225731