Microbicidal Dispersions and Coatings from Hybrid Nanoparticles of Poly (Methyl Methacrylate), Poly (Diallyl Dimethyl Ammonium) Chloride, Lipids, and Surfactants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical and Antimicrobial Properties of PMMA/PDDA/Amphiphile Dispersions
2.2. Physical and Antimicrobial Properties of Coatings Prepared from PMMA/PDDA/Amphiphile Dispersions
3. Materials and Methods
3.1. Materials
3.2. Preparation of Hybrid Nanoparticles (NPs) by Emulsion Polymerization
3.3. Determination of Zeta-Average Diameter (Dz), Polydispersity (P), and Zeta-Potential (ζ) for PMMA/PDDA NPs Dispersions
3.4. Preparation and Physical Characterization of Coatings from the NPs Dispersions by Casting from Photographs and Contact Angle Determinations
3.5. Microorganisms Growth and Determination of Cell Viability in the Presence of the PMMA/PDDA Dispersions and Coatings
3.6. Determination of Inhibition zones from NPs Dispersions and/or their Supernatants
3.7. Determination of PDDA by Chloride Microtitration
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
NPs | Nanoparticles |
PMMA | poly (methylmethacrylate) |
PDDA | poly (diallyldimethylammonium) chloride |
CTAB | cetyltrimethylammonium bromide |
DODAB | dioctadecyldimethylammonium bromide |
CFU | colony forming unities |
MMA | Methylmethacrylate |
ӨA | advancing contact angle |
AIBN | Azobisisobutyronitrile |
Dz | zeta-average diameter |
P | Polydispersity |
ζ | zeta-potential |
MHA | Mueller-Hinton agar |
DLS | dynamic light scattering |
μ | electrophoretic mobility |
η | viscosity of the medium |
ε | dielectric constant of the medium |
ATCC | american type culture collection |
References
- Carmona-Ribeiro, A.M.; Barbassa, L.; Melo, L.D. Antimicrobial Biomimetics. In Biomimetic Based Applications; Anne George; IntechOpen: Rijeka, Croatia, 2011; Volume 1, pp. 227–284. ISBN 978-953-307-195-4. [Google Scholar]
- Carmona-Ribeiro, A.M. The Versatile Dioctadecyldimethylammonium Bromide. In Application and Characterization of Surfactants; Reza Najjar; IntechOpen: Rijeka, Croatia, 2017; Volume 1, pp. 157–181. ISBN 978-953-51-3325-4. [Google Scholar]
- Vitiello, G.; Silvestri, B.; Luciani, G. Learning from Nature: Bioinspired Strategies Towards Antimicrobial Nanostructured Systems. Curr. Top. Med. Chem. 2018, 18, 22–41. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Ge, S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules 2019, 24, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbus, A.F.; Horozov, T.S.; Paunov, V.N. Colloid particle formulations for antimicrobial applications. Adv. Colloid Interface Sci. 2017, 249, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Paino, M.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial Polymers in the Nano-World. Nanomaterials 2017, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A technology evaluation. Expert Opin. Drug. Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef]
- Carmona-Ribeiro, A.M. Self-Assembled Antimicrobial Nanomaterials. Int. J. Environ. Res. Public Health 2018, 15, 1408. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Ribeiro, A.M. Biomimetic Nanomaterials from the Assembly of Polymers, Lipids, and Surfactants. In Surfactants and Detergents; Ashim Dutta; IntechOpen: London, UK, 2019; Volume 1, ISBN 978-1-78984-661-4. [Google Scholar]
- Yang, G.; Chen, S.; Zhang, J. Bioinspired and Biomimetic Nanotherapies for the Treatment of Infectious Diseases. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Ferrer, M.C.C.; Hickok, N.J.; Eckmann, D.M.; Composto, R.J. Antibacterial Biomimetic Hybrid Films. Soft Matter 2013, 8, 2423–2431. [Google Scholar] [CrossRef] [Green Version]
- Coll Ferrer, M.C.; Eckmann, U.N.; Composto, R.J.; Eckmann, D.M. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films. Toxicol. Appl. Pharmacol. 2013, 272, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Coll Ferrer, M.C.; Dastgheyb, S.; Hickok, N.J.; Eckmann, D.M.; Composto, R.J. Designing nanogel carriers for antibacterial applications. Acta Biomater. 2014, 10, 2105–2111. [Google Scholar] [CrossRef] [Green Version]
- Melo, L.D.; Mamizuka, E.M.; Carmona-Ribeiro, A.M. Antimicrobial Particles from Cationic Lipid and Polyelectrolytes. Langmuir 2010, 26, 12300–12306. [Google Scholar] [CrossRef] [PubMed]
- Xavier, G.R.S.; Carmona-Ribeiro, A.M. Cationic Biomimetic Particles of Polystyrene/Cationic Bilayer/Gramicidin for Optimal Bactericidal Activity. Nanomaterials 2017, 7, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Melo Carrasco, L.D.; Sampaio, J.L.M.; Carmona-Ribeiro, A.M. Supramolecular Cationic Assemblies against Multidrug-Resistant Microorganisms: Activity and Mechanism of Action. Int. J. Mol. Sci. 2015, 16, 6337–6352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvão, C.N.; Sanches, L.M.; Mathiazzi, B.I.; Ribeiro, R.T.; Petri, D.F.S.; Carmona-Ribeiro, A.M. Antimicrobial Coatings from Hybrid Nanoparticles of Biocompatible and Antimicrobial Polymers. Int. J. Mol. Sci. 2018, 19, 2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Paino, M.; Juan-Rodríguez, R.; Cuervo-Rodríguez, R.; Tejero, R.; López, D.; López-Fabal, F.; Gómez-Garcés, J.L.; Muñoz-Bonilla, A.; Fernández-García, M. Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers. Colloids Surf B Biointerfaces 2016, 140, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Sanches, L.M.; Petri, D.F.S.; de Melo Carrasco, L.D.; Carmona-Ribeiro, A.M. The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate). J. Nanobiotechnol. 2015, 13, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, C.N.; Priya, R.; Swain, S.; Kumar Jena, G.; Panigrahi, K.C.; Ghose, D. Pharmaceutical significance of Eudragit: A review. Future J. Pharm. Sci. 2017, 3, 33–45. [Google Scholar] [CrossRef]
- Wijesinghe, W.P.S.L.; Mantilaka, M.M.M.G.P.G.; Karunarathne, T.S.E.F.; Rajapakse, R.M.G. Synthesis of a hydroxyapatite/poly(methyl methacrylate) nanocomposite using dolomite. Nanoscale Adv. 2019, 1, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Atik, S.S.; Thomas, J.K. Polymerized microemulsions. J. Am. Chem. Soc. 1981, 103, 4279–4280. [Google Scholar] [CrossRef]
- Stoffer, J.O.; Bone, T. Polymerization in Water-in-Oil Microemulsion Systems Ii: Sem Investigation of Structure. J. Dispers. Sci. Technol. 1980, 1, 393–412. [Google Scholar] [CrossRef]
- Jayakrishnan, A.; Shah, D.O. Polymerization of oil-in-water microemulsions: Polymerization of styrene and methyl methacrylate. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 31–38. [Google Scholar] [CrossRef]
- Daniels, E.S.; Sudol, D.; El-Asser, M.S. Overview of Polymer Colloids: Preparation, Characterization, and Applications. In Scientific Methods for the Study of Polymer Colloids and Their Applications; Candau, F., Ottewill, R.H., Eds.; Kluwer Academic Press: Dordrecht, The Netherlands, 1990; ISBN 0-7923-0599-X. [Google Scholar]
- Lichti, G.; Gilbert, R.G.; Napper, D.H. The mechanisms of latex particle formation and growth in the emulsion polymerization of styrene using the surfactant sodium dodecyl sulfate. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 269–291. [Google Scholar] [CrossRef]
- Melo, L.D.; Palombo, R.R.; Petri, D.F.S.; Bruns, M.; Pereira, E.M.A.; Carmona-Ribeiro, A.M. Structure–Activity Relationship for Quaternary Ammonium Compounds Hybridized with Poly(methyl methacrylate). ACS Appl. Mater. Interfaces 2011, 3, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.M.A.; Kosaka, P.M.; Rosa, H.; Vieira, D.B.; Kawano, Y.; Petri, D.F.S.; Carmona-Ribeiro, A.M. Hybrid Materials from Intermolecular Associations between Cationic Lipid and Polymers. J. Phys. Chem. B 2008, 112, 9301–9310. [Google Scholar] [CrossRef] [PubMed]
- Naves, A.F.; Palombo, R.R.; Carrasco, L.D.M.; Carmona-Ribeiro, A.M. Antimicrobial Particles from Emulsion Polymerization of Methyl Methacrylate in the Presence of Quaternary Ammonium Surfactants. Langmuir 2013, 29, 9677–9684. [Google Scholar] [CrossRef]
- Raja, M.; Vales, E. Effects of sodium chloride on membrane fusion and on the formation of aggregates of potassium channel KcsA in Escherichia coli membrane. Biophys. Chem. 2009, 142, 46–54. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis—The “accidental” pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, Y.; Racker, E. Partial Resolution of the Enzymes Catalyzing Oxidative Phosphorylation VIII. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase. J. Biol. Chem. 1966, 241, 2461–2466. [Google Scholar]
- Carmona-Ribeiro, A.M. Lipid Bilayer Fragments and Disks in Drug Delivery. Curr. Med. Chem. 2006, 13, 1359–1370. [Google Scholar] [CrossRef]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
- Hu, H.; Larson, R.G. Marangoni Effect Reverses Coffee-Ring Depositions. J. Phys. Chem. B 2006, 110, 7090–7094. [Google Scholar] [CrossRef] [PubMed]
- Pauchard, L.; Parisse, F.; Allain, C. Influence of salt content on crack patterns formed through colloidal suspension desiccation. Phys. Rev. E 1999, 59, 3737–3740. [Google Scholar] [CrossRef]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology. (the “Gold Book”), 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 2019; ISBN 0-9678550-9-8. [Google Scholar]
- Augusto, O.; Carmona-Ribeiro, A.M. Introducing model membranes and lipoperoxidation. Biochem. Educ. 1989, 17, 209–210. [Google Scholar] [CrossRef]
- Campanhã, M.T.N.; Mamizuka, E.M.; Carmona-Ribeiro, A.M. Interactions between cationic liposomes and bacteria: the physical-chemistry of the bactericidal action. J. Lipid Res. 1999, 40, 1495–1500. [Google Scholar] [PubMed]
- Martins, L.M.S.; Mamizuka, E.M.; Carmona-Ribeiro, A.M. Cationic Vesicles as Bactericides. Langmuir 1997, 13, 5583–5587. [Google Scholar] [CrossRef]
- Vieira, D.B.; Carmona-Ribeiro, A.M. Cationic lipids and surfactants as antifungal agents: mode of action. J. Antimicrob. Chemother. 2006, 58, 760–767. [Google Scholar] [CrossRef]
- Carmona Ribeiro, A.M.; Carrasco, L.D.M. Fungicidal assemblies and their mode of action. OA Biotechnol. 2013, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, R.T.; Braga, V.H.A.; Carmona-Ribeiro, A.M. Biomimetic Cationic Nanoparticles Based on Silica: Optimizing Bilayer Deposition from Lipid Films. Biomimetics 2017, 2, 20. [Google Scholar] [CrossRef]
- Sobral, C.N.C.; Soto, M.A.; Carmona-Ribeiro, A.M. Characterization of DODAB/DPPC vesicles. Chem. Phys. Lipids 2008, 152, 38–45. [Google Scholar] [CrossRef]
- Grabowski, E.; Morrison, I. Particle size distribution from analysis of quasi-elastic light scattering data. In Measurement of Suspended Particles by Quasi-Elastic Light Scattering; Dahneke, B.E., Ed.; Wiley: New York, NY, USA, 1983; Volume 21, pp. 199–236. [Google Scholar]
- Pereira, E.M.A.; Petri, D.F.S.; Carmona-Ribeiro, A.M. Synthetic Vesicles at Hydrophobic Surfaces. J. Phys. Chem. B 2002, 106, 8762–8767. [Google Scholar] [CrossRef]
- Pereira, E.M.A.; Petri, D.F.S.; Carmona-Ribeiro, A.M. Adsorption of Cationic Lipid Bilayer onto Flat Silicon Wafers: Effect of Ion Nature and Concentration. J. Phys. Chem. B 2006, 110, 10070–10074. [Google Scholar] [CrossRef] [PubMed]
- Chapin, K.; Lauderdale, T.L. Comparison of Bactec 9240 and Difco ESP blood culture systems for detection of organisms from vials whose entry was delayed. J. Clin. Microbiol. 1996, 34, 543–549. [Google Scholar] [PubMed]
- Schales, O.; Schales, S. A simple and accurate method for the determination of chloride in biological fluids. J. Biol. Chem. 1941, 140, 879–884. [Google Scholar]
- Carmona-Ribeiro, A.M. Preparation and Characterization of Biomimetic Nanoparticles for Drug Delivery. In Nanoparticles in Biology and Medicine; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; pp. 283–294. ISBN 978-1-61779-952-5. [Google Scholar]
Dispersion | D/nm | Dz/nm | Dzminimum/nm | ∆/2/nm | P | ζ/mV | Solids/mg·mL−1 | Conversion/% |
---|---|---|---|---|---|---|---|---|
PMMA/PDDA | 164 ± 32 | 226 ± 3 | 166 ± 2 | 30 | 0.010 ± 0.010 | 51 ± 1 | 6 ± 1 | 11 ± 1 |
PMMA/PDDA/CTAB | 97 ± 14 | 116 ± 1 | 98 ± 1 | 9 | 0.040 ± 0.010 | 50 ± 2 | 26 ± 1 | 79 ± 1 |
PMMA/PDDA/DODAB | 183 ± 28 | 226 ± 1 | 194 ± 1 | 16 | 0.030 ± 0.020 | 54 ± 1 | 17 ± 1 | 47 ± 1 |
PMMA/PDDA/lecithin | 190 ± 25 | 217 ± 2 | 194 ± 1 | 11.5 | 0.040 ± 0.020 | 55 ± 1 | 8 ± 1 | 24 ± 1 |
Dispersion 1 | Minimal Microbicidal Concentration (MMC), mg·mL−1 | ||
---|---|---|---|
E. coli | S. aureus | C. albicans | |
PDDA 2 | 0.005 | >0.500 | >0.005 |
PMMA/PDDA 2 | 0.007 | >0.500 | >1.000 |
PMMA/PDDA/DODAB | 0.100 | 1.000 | >3.000 |
PMMA/PDDA/CTAB | 0.030 | 1.000 | 1.310 |
PMMA/PDDA/Lecithin | 0.250 | 0.550 | >3.000 |
Dispersion | [PDDA]total/mg·mL−1 | [PDDA]supernatant/mg·mL−1 Micro-Titration | [PDDA]supernatant/mg·mL−1 Inhibition Zone | [PDDA]nanoparticles/mg·mL−1 |
---|---|---|---|---|
PMMA/PDDA | 4.2 | 3.2 | 3.5 | 0.7–1.0 |
PMMA/PDDA/DODAB | 2.9 | 2.5 | 2.8 | 0.1–0.4 |
PMMA/PDDA/CTAB | 2.6 | 1.9 | 2.8 | 0.0–0.7 |
PMMA/PDDA/lecithin | 2.8 | 2.9 | 3.5 | 0.0–0.0 |
Materials | Procedure | Thickness/µm | Rugosity R | Refractive Index | Contact Angle ӨA/° |
---|---|---|---|---|---|
PMMA 1 | Spin-coating | 0.091 ± 0.001 | N.A. | 1.4999 ± 0.004 | 76 ± 5 |
PMMA/PDDA 1 | Spin-coating | 0.094 ± 0.003 | N.A. | 1.4951 ± 0.004 | 15 ± 1 |
PMMA/PDDA 2 | Casting | 3.82 | 1.6 | N.A. | 9 ± 2 |
PMMA/PDDA/CTAB | Casting | 12.70 | 4.0 | N.A. | 14 ± 1 |
PMMA/PDDA/DODAB | Casting | 4.32 | 2.2 | N.A. | 47 ± 3 |
PMMA/PDDA/lecithin | Casting | 9.17 | 3.0 | N.A. | 25 ± 1 |
Dispersion | [MMA]/M | [PDDA]/mg·mL−1 | [PDDA]corrected/mg·mL−1 | [CTAB]/mM | [DODAB]/mM | Lecithin/mM |
---|---|---|---|---|---|---|
PMMA/PDDA | 0.56 | 5 | 4.2 | - | - | - |
PMMA/PDDA/CTAB | 0.56 | 5 | 2.6 | 2 | - | - |
PMMA/PDDA/DODAB | 0.56 | 5 | 2.9 | - | 2 | - |
PMMA/PDDA/lecithin | 0.56 | 5 | 2.8 | - | - | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, R.T.; Galvão, C.N.; Betancourt, Y.P.; Mathiazzi, B.I.; Carmona-Ribeiro, A.M. Microbicidal Dispersions and Coatings from Hybrid Nanoparticles of Poly (Methyl Methacrylate), Poly (Diallyl Dimethyl Ammonium) Chloride, Lipids, and Surfactants. Int. J. Mol. Sci. 2019, 20, 6150. https://doi.org/10.3390/ijms20246150
Ribeiro RT, Galvão CN, Betancourt YP, Mathiazzi BI, Carmona-Ribeiro AM. Microbicidal Dispersions and Coatings from Hybrid Nanoparticles of Poly (Methyl Methacrylate), Poly (Diallyl Dimethyl Ammonium) Chloride, Lipids, and Surfactants. International Journal of Molecular Sciences. 2019; 20(24):6150. https://doi.org/10.3390/ijms20246150
Chicago/Turabian StyleRibeiro, Rodrigo Tadeu, Carolina Nascimento Galvão, Yunys Pérez Betancourt, Beatriz Ideriha Mathiazzi, and Ana Maria Carmona-Ribeiro. 2019. "Microbicidal Dispersions and Coatings from Hybrid Nanoparticles of Poly (Methyl Methacrylate), Poly (Diallyl Dimethyl Ammonium) Chloride, Lipids, and Surfactants" International Journal of Molecular Sciences 20, no. 24: 6150. https://doi.org/10.3390/ijms20246150
APA StyleRibeiro, R. T., Galvão, C. N., Betancourt, Y. P., Mathiazzi, B. I., & Carmona-Ribeiro, A. M. (2019). Microbicidal Dispersions and Coatings from Hybrid Nanoparticles of Poly (Methyl Methacrylate), Poly (Diallyl Dimethyl Ammonium) Chloride, Lipids, and Surfactants. International Journal of Molecular Sciences, 20(24), 6150. https://doi.org/10.3390/ijms20246150