Update on Congenital Myopathies in Adulthood
Abstract
:1. Introduction
- Nemaline myopathies;
- Core myopathies;
- Centronuclear myopathies;
- Congenital fiber type disproportion (CFTD);
- Myosin storage myopathies.
2. Classical Classification
2.1. Nemaline Myopathies
2.2. Core Myopathies
2.3. Centronuclear Myopathies
2.4. Congenital Fiber Type Disproportion (CFTD)
2.5. Myosin Storage Myopathies
3. Pathomechanisms of Congenital Myopathies and Genetic Associations
- Thin filament dysfunction, as a result of a primary defect in proteins or modifiers of actin thin filament (NEB, ACTA1, TPM2, TPM3, TNNT1, TNNT3, LMOD3, CFL2) [21]
- Protein turnover dysregulation, due to defect in Kelch family member proteins, which are important for the proper function of the ubiquitin-proteasome system (KLHL40, KLHL41, KBTBD13) [35]
- Oxidative stress increase by mutations in selenoprotein (SEPN1), which is implicated in modulating EC coupling [38]
- Destabilization of thick filaments as a result of mutations in titin (TTN), which interacts with many sarcomeric proteins and protects sarcomere from overstretching [45]
4. Congenital Myopathies in Adulthood and Classification by Protein and Gene Defect
4.1. RYR1-Related Myopathies
4.2. SEPN-Related Myopathies
4.3. Dynamin 2-Related Myopathies
4.4. BIN1-Related Myopathies
4.5. MTM1-Related Myopathies
4.6. Nebulin-Related Myopathies
4.7. ACTA1-Related Myopathies
4.8. TPM2 and TPM3-Related Myopathies
4.9. MYPN-Related Myopathies
4.10. Kelch-Related Myopathies
4.11. LMOD3-Related Myopathies
4.12. ACTN2-Related Myopathies
4.13. TnT-Related Myopathies
4.14. CACNA1S-Related Myopathies
4.15. RYR3-Related Myopathies
4.16. Titin-Related Myopathies
4.17. MEGF10-Related Myopathies
4.18. ΜYH7-Related Myopathies
4.19. MYH2-Related Myopathies
4.20. HADC1-Related Myopathy
4.21. SCN4A-Related Myopathy
4.22. Other Genes Implicated in CMs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Romero, N.B.; Clarke, N.F. Congenital myopathies. Handb. Clin. Neurol. 2013, 113, 1321–1336. [Google Scholar] [CrossRef] [PubMed]
- Mah, J.K.; Joseph, J.T. An Overview of Congenital Myopathies. Contin. (Minneap Minn) 2016, 22, 1932–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- North, K.N.; Wang, C.H.; Clarke, N.; Jungbluth, H.; Vainzof, M.; Dowling, J.J.; Amburgey, K.; Quijano-Roy, S.; Beggs, A.H.; Sewry, C.; et al. Approach to the diagnosis of congenital myopathies. Neuromuscul. Disord. 2014, 24, 97–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claeys, K.G. Congenital myopathies: An update. Dev. Med. Child Neurol. 2020, 62, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Magee, K.R.; Shy, G.M. A new congenital non-progressive myopathy. Brain 1956, 79, 610–621. [Google Scholar] [CrossRef]
- Dubowitz, V.; Pearse, A.G. Oxidative enzymes and phosphorylase in central-core disease of muscle. Lancet 1960, 2, 23–24. [Google Scholar] [CrossRef]
- Schnell, C.; Kan, A.; North, K.N. ‘An artefact gone awry’: Identification of the first case of nemaline myopathy by Dr, R.D.K. Reye. Neuromuscul. Disord. 2000, 10, 307–312. [Google Scholar] [CrossRef]
- Cassandrini, D.; Trovato, R.; Rubegni, A.; Lenzi, S.; Fiorillo, C.; Baldacci, J.; Minetti, C.; Astrea, G.; Bruno, C.; Santorelli, F.M. Congenital myopathies: Clinical phenotypes and new diagnostic tools. Ital. J. Pediatr. 2017, 43, 101. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, L.J.; Schreckenbach, T.; Nadaj-Pakleza, A.; Stenzel, W.; Rushing, E.J.; Van Damme, P.; Ferbert, A.; Petri, S.; Hartmann, C.; Bornemann, A.; et al. Sporadic late-onset nemaline myopathy: Clinico-pathological characteristics and review of 76 cases. Orphanet. J. Rare. Dis. 2017, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Uruha, A.; Benveniste, O. Sporadic late-onset nemaline myopathy with monoclonal gammopathy of undetermined significance. Curr. Opin. Neurol. 2017, 30, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.P.; Nneji, G.; Squire, J.M. The three-dimensional structure of the nemaline rod Z-band. J. Cell. Biol. 1990, 111, 2961–2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfatti, E.; Romero, N.B. Nemaline myopathies: State of the art. Rev. Neurol. (Paris) 2016, 172, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Moreau-Le Lan, S.; Aller, E.; Calabria, I. New mutations found by Next-Generation Sequencing screening of Spanish patients with Nemaline Myopathy. PLoS ONE 2018, 13, e0207296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sewry, C.A.; Laitila, J.M.; Wallgren-Pettersson, C. Nemaline myopathies: A current view. J. Muscle. Res. Cell. Motil. 2019, 40, 111–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallgren-Pettersson, C.; Laing, N.G. Report of the 70th ENMC International Workshop: Nemaline myopathy, 11–13 June 1999, Naarden, The Netherlands. Neuromuscul. Disord. 2000, 10, 299–306. [Google Scholar] [CrossRef]
- Jungbluth, H.; Sewry, C.A.; Muntoni, F. Core myopathies. Semin. Pediatr. Neurol. 2011, 18, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Jungbluth, H. Central core disease. Orphanet. J. Rare. Dis. 2007, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Engel, A.G.; Gomez, M.R.; Groover, R.V. Multicore disease. A recently recognized congenital myopathy associated with multifocal degeneration of muscle fibers. Mayo Clin. Proc. 1971, 46, 666–681. [Google Scholar]
- Amador, F.J.; Stathopulos, P.B.; Enomoto, M.; Ikura, M. Ryanodine receptor calcium release channels: Lessons from structure–function studies. Febs. J. 2013, 280, 5456–5470. [Google Scholar] [CrossRef]
- Rosenberg, H.; Davis, M.; James, D.; Pollock, N.; Stowell, K. Malignant hyperthermia. Orphanet. J. Rare. Dis. 2007, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Jungbluth, H.; Dowling, J.J.; Ferreiro, A.; Muntoni, F. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29–31 January 2016. Neuromuscul. Disord. 2016, 26, 624–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungbluth, H.; Gautel, M. Pathogenic mechanisms in centronuclear myopathies. Front. Aging Neurosci. 2014, 6, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravenscroft, G.; Laing, N.G.; Bonnemann, C.G. Pathophysiological concepts in the congenital myopathies: Blurring the boundaries, sharpening the focus. Brain 2015, 138, 246–268. [Google Scholar] [CrossRef] [Green Version]
- Jungbluth, H.; Wallgren-Pettersson, C.; Laporte, J.F. 198th ENMC International Workshop: 7th Workshop on Centronuclear (Myotubular) myopathies, 31st May–2nd June 2013, Naarden, The Netherlands. Neuromuscul. Disord. 2013, 23, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Brooke, M.H.; Engel, W.K. The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children’s biopsies. Neurology 1969, 19, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.F. Congenital fiber-type disproportion. Semin. Pediatr. Neurol. 2011, 18, 264–271. [Google Scholar] [CrossRef]
- Clarke, N.F. Congenital fibre type disproportion—A syndrome at the crossroads of the congenital myopathies. Neuromuscul. Disord. 2011, 21, 252–253. [Google Scholar] [CrossRef]
- Clarke, N.F.; Smith, R.L.; Bahlo, M.; North, K.N. A novel X-linked form of congenital fiber-type disproportion. Ann. Neurol. 2005, 58, 767–772. [Google Scholar] [CrossRef]
- Tajsharghi, H.; Oldfors, A. Myosinopathies: Pathology and mechanisms. Acta Neuropathol. 2013, 125, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Oldfors, A. Hereditary myosin myopathies. Neuromuscul. Disord. 2007, 17, 355–367. [Google Scholar] [CrossRef]
- Li, N.; Zhao, Z.; Shen, H.; Bing, Q.; Guo, X.; Hu, J. MYH7 mutation associated with two phenotypes of myopathy. Neurol. Sci. 2018, 39, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Bohlega, S.; Lach, B.; Meyer, B.F.; Al Said, Y.; Kambouris, M.; Al Homsi, M.; Cupler, E.J. Autosomal dominant hyaline body myopathy: Clinical variability and pathologic findings. Neurology 2003, 61, 1519–1523. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, E.; Gavassini, B.F.; Borsato, C.; Melacini, P.; Vianello, A.; Stramare, R.; Cenacchi, G.; Angelini, C. MYH7 gene mutation in myosin storage myopathy and scapulo-peroneal myopathy. Neuromuscul. Disord. 2007, 17, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Tajsharghi, H.; Oldfors, A.; Macleod, D.P.; Swash, M. Homozygous mutation in MYH7 in myosin storage myopathy and cardiomyopathy. Neurology 2007, 68, 962. [Google Scholar] [CrossRef]
- Gupta, V.A.; Beggs, A.H. Kelch proteins: Emerging roles in skeletal muscle development and diseases. Skelet. Muscle 2014, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Bitoun, M.; Maugenre, S.; Jeannet, P.Y.; Lacene, E.; Ferrer, X.; Laforet, P.; Martin, J.J.; Laporte, J.; Lochmuller, H.; Beggs, A.H.; et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat. Genet. 2005, 37, 1207–1209. [Google Scholar] [CrossRef]
- Toussaint, A.; Cowling, B.S.; Hnia, K.; Mohr, M.; Oldfors, A.; Schwab, Y.; Yis, U.; Maisonobe, T.; Stojkovic, T.; Wallgren-Pettersson, C.; et al. Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol. 2011, 121, 253–266. [Google Scholar] [CrossRef]
- Marino, M.; Stoilova, T.; Giorgi, C.; Bachi, A.; Cattaneo, A.; Auricchio, A.; Pinton, P.; Zito, E. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum. Mol. Genet. 2015, 24, 1843–1855. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Ochoa, E.O.; Pratt, S.J.P.; Lovering, R.M.; Schneider, M.F. Critical Role of Intracellular RyR1 Calcium Release Channels in Skeletal Muscle Function and Disease. Front. Physiol. 2015, 6, 420. [Google Scholar] [CrossRef] [Green Version]
- Nilipour, Y.; Nafissi, S.; Tjust, A.E.; Ravenscroft, G.; Hossein Nejad Nedai, H.; Taylor, R.L.; Varasteh, V.; Pedrosa Domellof, F.; Zangi, M.; Tonekaboni, S.H.; et al. Ryanodine receptor type 3 (RYR3) as a novel gene associated with a myopathy with nemaline bodies. Eur. J. Neurol. 2018, 25, 841–847. [Google Scholar] [CrossRef]
- Canato, M.; Capitanio, P.; Reggiani, C.; Cancellara, L. The disorders of the calcium release unit of skeletal muscles: What have we learned from mouse models? J. Muscle Res. Cell. Motil. 2015, 36, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Otey, C.A.; Rachlin, A.; Moza, M.; Arneman, D.; Carpen, O. The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int. Rev. Cytol. 2005, 246, 31–58. [Google Scholar] [CrossRef] [PubMed]
- Lornage, X.; Romero, N.B.; Grosgogeat, C.A.; Malfatti, E.; Donkervoort, S.; Marchetti, M.M.; Neuhaus, S.B.; Foley, A.R.; Labasse, C.; Schneider, R.; et al. ACTN2 mutations cause “Multiple structured Core Disease” (MsCD). Acta Neuropathol. 2019, 137, 501–519. [Google Scholar] [CrossRef]
- Berger, J.; Berger, S.; Li, M.; Currie, P.D. Myo18b is essential for sarcomere assembly in fast skeletal muscle. Hum. Mol. Genet. 2017, 26, 1146–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linke, W.A. Titin Gene and Protein Functions in Passive and Active Muscle. Annu. Rev. Physiol. 2018, 80, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Jungbluth, H.; Treves, S.; Zorzato, F.; Sarkozy, A.; Ochala, J.; Sewry, C.; Phadke, R.; Gautel, M.; Muntoni, F. Congenital myopathies: Disorders of excitation-contraction coupling and muscle contraction. Nat. Rev. Neurol. 2018, 14, 151–167. [Google Scholar] [CrossRef]
- Geschwind, D.H.; Paulson, H.L.; Klein, C. Neurogenetics; Elsevier: Amsterdam, The Netherlands, 2018; Part II; Volume 148. [Google Scholar]
- Nicolau, S.; Liewluck, T.; Tracy, J.A.; Laughlin, R.S.; Milone, M. Congenital myopathies in the adult neuromuscular clinic: Diagnostic challenges and pitfalls. Neurol. Genet. 2019, 5, e341. [Google Scholar] [CrossRef] [Green Version]
- Kushnir, A.; Wajsberg, B.; Marks, A.R. Ryanodine receptor dysfunction in human disorders. Biochim. Biophys. Acta Mol. Cell. Res. 2018, 1865, 1687–1697. [Google Scholar] [CrossRef]
- Shishmarev, D. Excitation-contraction coupling in skeletal muscle: Recent progress and unanswered questions. Biophys. Rev. 2020, 12, 143–153. [Google Scholar] [CrossRef]
- Snoeck, M.; van Engelen, B.G.; Kusters, B.; Lammens, M.; Meijer, R.; Molenaar, J.P.; Raaphorst, J.; Verschuuren-Bemelmans, C.C.; Straathof, C.S.; Sie, L.T.; et al. RYR1-related myopathies: A wide spectrum of phenotypes throughout life. Eur. J. Neurol. 2015, 22, 1094–1112. [Google Scholar] [CrossRef]
- Lawal, T.A.; Todd, J.J.; Meilleur, K.G. Ryanodine Receptor 1-Related Myopathies: Diagnostic and Therapeutic Approaches. Neurotherapeutics 2018, 15, 885–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Ibarra, M.C.; Malicdan, M.C.; Murayama, K.; Ichihara, Y.; Kikuchi, H.; Nonaka, I.; Noguchi, S.; Hayashi, Y.K.; Nishino, I. Central core disease is due to RYR1 mutations in more than 90% of patients. Brain 2006, 129, 1470–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilmshurst, J.M.; Lillis, S.; Zhou, H.; Pillay, K.; Henderson, H.; Kress, W.; Muller, C.R.; Ndondo, A.; Cloke, V.; Cullup, T.; et al. RYR1 mutations are a common cause of congenital myopathies with central nuclei. Ann. Neurol. 2010, 68, 717–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, N.F.; Waddell, L.B.; Cooper, S.T.; Perry, M.; Smith, R.L.; Kornberg, A.J.; Muntoni, F.; Lillis, S.; Straub, V.; Bushby, K.; et al. Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion. Hum. Mutat. 2010, 31, E1544–E1550. [Google Scholar] [CrossRef]
- Jungbluth, H.; Zhou, H.; Hartley, L.; Halliger-Keller, B.; Messina, S.; Longman, C.; Brockington, M.; Robb, S.A.; Straub, V.; Voit, T.; et al. Minicore myopathy with ophthalmoplegia caused by mutations in the ryanodine receptor type 1 gene. Neurology 2005, 65, 1930–1935. [Google Scholar] [CrossRef]
- Monnier, N.; Romero, N.B.; Lerale, J.; Nivoche, Y.; Qi, D.; MacLennan, D.H.; Fardeau, M.; Lunardi, J. An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum. Mol. Genet. 2000, 9, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Sato, I.; Wu, S.; Ibarra, M.C.; Hayashi, Y.K.; Fujita, H.; Tojo, M.; Oh, S.J.; Nonaka, I.; Noguchi, S.; Nishino, I. Congenital neuromuscular disease with uniform type 1 fiber and RYR1 mutation. Neurology 2008, 70, 114–122. [Google Scholar] [CrossRef]
- Jeong, S.K.; Kim, D.C.; Cho, Y.G.; Sunwoo, I.N.; Kim, D.S. A double mutation of the ryanodine receptor type 1 gene in a malignant hyperthermia family with multiminicore myopathy. J. Clin. Neurol. 2008, 4, 123–130. [Google Scholar] [CrossRef]
- Duarte, S.T.; Oliveira, J.; Santos, R.; Pereira, P.; Barroso, C.; Conceicao, I.; Evangelista, T. Dominant and recessive RYR1 mutations in adults with core lesions and mild muscle symptoms. Muscle Nerve 2011, 44, 102–108. [Google Scholar] [CrossRef]
- Remiche, G.; Kadhim, H.; Abramowicz, M.; Mavroudakis, N.; Monnier, N.; Lunardi, J. A novel large deletion in the RYR1 gene in a Belgian family with late-onset and recessive core myopathy. Neuromuscul. Disord. 2015, 25, 397–402. [Google Scholar] [CrossRef]
- Peddareddygari, L.R.; Oberoi, K.; Sharer, L.R.; Grewal, R.P. Adult Diagnosis of Type 1 Fiber Predominance Myopathy Caused by Novel Mutations in the RYR1 Gene. J. Clin. Neuromuscul. Dis. 2019, 20, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Garibaldi, M.; Rendu, J.; Brocard, J.; Lacene, E.; Faure, J.; Brochier, G.; Beuvin, M.; Labasse, C.; Madelaine, A.; Malfatti, E.; et al. ‘Dusty core disease’ (DuCD): Expanding morphological spectrum of RYR1 recessive myopathies. Acta Neuropathol. Commun. 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Matthews, E.; Neuwirth, C.; Jaffer, F.; Scalco, R.S.; Fialho, D.; Parton, M.; Raja Rayan, D.; Suetterlin, K.; Sud, R.; Spiegel, R.; et al. Atypical periodic paralysis and myalgia: A novel RYR1 phenotype. Neurology 2018, 90, e412–e418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughlin, R.S.; Niu, Z.; Wieben, E.; Milone, M. RYR1 causing distal myopathy. Mol. Genet. Genom. Med. 2017, 5, 800–804. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Lillis, S.; Munteanu, I.; Scoto, M.; Zhou, H.; Quinlivan, R.; Straub, V.; Manzur, A.Y.; Roper, H.; Jeannet, P.Y.; et al. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum. Mutat. 2012, 33, 981–988. [Google Scholar] [CrossRef]
- Shepherd, S.; Ellis, F.; Halsall, J.; Hopkins, P.; Robinson, R. RYR1 mutations in UK central core disease patients: More than just the C-terminal transmembrane region of the RYR1 gene. J. Med. Genet. 2004, 41, e33. [Google Scholar] [CrossRef] [Green Version]
- Loseth, S.; Voermans, N.C.; Torbergsen, T.; Lillis, S.; Jonsrud, C.; Lindal, S.; Kamsteeg, E.J.; Lammens, M.; Broman, M.; Dekomien, G.; et al. A novel late-onset axial myopathy associated with mutations in the skeletal muscle ryanodine receptor (RYR1) gene. J. Neurol. 2013, 260, 1504–1510. [Google Scholar] [CrossRef]
- Jungbluth, H.; Lillis, S.; Zhou, H.; Abbs, S.; Sewry, C.; Swash, M.; Muntoni, F. Late-onset axial myopathy with cores due to a novel heterozygous dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul. Disord. 2009, 19, 344–347. [Google Scholar] [CrossRef]
- Jokela, M.; Tasca, G.; Vihola, A.; Mercuri, E.; Jonson, P.-H.; Lehtinen, S.; Välipakka, S.; Pane, M.; Donati, M.; Johari, M.; et al. An unusual ryanodine receptor 1 (RYR1) phenotype: Mild calf-predominant myopathy. Neurology 2019, 92, e1600–e1609. [Google Scholar] [CrossRef]
- Klein, A.; Jungbluth, H.; Clement, E.; Lillis, S.; Abbs, S.; Munot, P.; Pane, M.; Wraige, E.; Schara, U.; Straub, V.; et al. Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch. Neurol. 2011, 68, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, H.; Pollock, N.; Schiemann, A.; Bulger, T.; Stowell, K. Malignant hyperthermia: A review. Orphanet. J. Rare. Dis. 2015, 10, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambuughin, N.; Holley, H.; Muldoon, S.; Brandom, B.W.; de Bantel, A.M.; Tobin, J.R.; Nelson, T.E.; Goldfarb, L.G. Screening of the entire ryanodine receptor type 1 coding region for sequence variants associated with malignant hyperthermia susceptibility in the north american population. Anesthesiology 2005, 102, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Galli, L.; Orrico, A.; Lorenzini, S.; Censini, S.; Falciani, M.; Covacci, A.; Tegazzin, V.; Sorrentino, V. Frequency and localization of mutations in the 106 exons of the RYR1 gene in 50 individuals with malignant hyperthermia. Hum. Mutat. 2006, 27, 830. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.; Carpenter, D.; Shaw, M.A.; Halsall, J.; Hopkins, P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum. Mutat. 2006, 27, 977–989. [Google Scholar] [CrossRef] [PubMed]
- Wappler, F.; Fiege, M.; Steinfath, M.; Agarwal, K.; Scholz, J.; Singh, S.; Matschke, J.; Schulte Am Esch, J. Evidence for susceptibility to malignant hyperthermia in patients with exercise-induced rhabdomyolysis. Anesthesiology 2001, 94, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Sambuughin, N.; Capacchione, J.; Blokhin, A.; Bayarsaikhan, M.; Bina, S.; Muldoon, S. The ryanodine receptor type 1 gene variants in African American men with exertional rhabdomyolysis and malignant hyperthermia susceptibility. Clin. Genet. 2009, 76, 564–568. [Google Scholar] [CrossRef]
- Davis, M.; Brown, R.; Dickson, A.; Horton, H.; James, D.; Laing, N.; Marston, R.; Norgate, M.; Perlman, D.; Pollock, N.; et al. Malignant hyperthermia associated with exercise-induced rhabdomyolysis or congenital abnormalities and a novel RYR1 mutation in New Zealand and Australian pedigrees. Br. J. Anaesth. 2002, 88, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Kraeva, N.; Sapa, A.; Dowling, J.J.; Riazi, S. Malignant hyperthermia susceptibility in patients with exertional rhabdomyolysis: A retrospective cohort study and updated systematic review. Can. J. Anaesth. 2017, 64, 736–743. [Google Scholar] [CrossRef]
- Carsana, A. Exercise-induced rhabdomyolysis and stress-induced malignant hyperthermia events, association with malignant hyperthermia susceptibility, and RYR1 gene sequence variations. Sci. World J. 2013, 2013, 531465. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, N.; Voermans, N.C.; Lillis, S.; Stewart, K.; Kamsteeg, E.J.; Drost, G.; Quinlivan, R.; Snoeck, M.; Norwood, F.; Radunovic, A.; et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul. Disord. 2013, 23, 540–548. [Google Scholar] [CrossRef]
- Witting, N.; Laforet, P.; Voermans, N.C.; Roux-Buisson, N.; Bompaire, F.; Rendu, J.; Duno, M.; Feillet, F.; Kamsteeg, E.J.; Poulsen, N.S.; et al. Phenotype and genotype of muscle ryanodine receptor rhabdomyolysis-myalgia syndrome. Acta Neurol. Scand. 2018, 137, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Voermans, N.C.; Snoeck, M.; Jungbluth, H. RYR1-related rhabdomyolysis: A common but probably underdiagnosed manifestation of skeletal muscle ryanodine receptor dysfunction. Rev. Neurol. (Paris) 2016, 172, 546–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knuiman, G.J.; Kusters, B.; Eshuis, L.; Snoeck, M.; Lammens, M.; Heytens, L.; De Ridder, W.; Baets, J.; Scalco, R.S.; Quinlivan, R.; et al. The histopathological spectrum of malignant hyperthermia and rhabdomyolysis due to RYR1 mutations. J. Neurol. 2019, 266, 876–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snoeck, M.; Treves, S.; Molenaar, J.P.; Kamsteeg, E.J.; Jungbluth, H.; Voermans, N.C. “Human Stress Syndrome” and the Expanding Spectrum of RYR1-Related Myopathies. Cell. Biochem. Biophys. 2016, 74, 85–87. [Google Scholar] [CrossRef]
- Molenaar, J.P.; Voermans, N.C.; van Hoeve, B.J.; Kamsteeg, E.J.; Kluijtmans, L.A.; Kusters, B.; Jungbluth, H.J.; van Engelen, B.G. Fever-induced recurrent rhabdomyolysis due to a novel mutation in the ryanodine receptor type 1 gene. Intern. Med. J. 2014, 44, 819–820. [Google Scholar] [CrossRef]
- Scalco, R.S.; Voermans, N.C.; Piercy, R.J.; Jungbluth, H.; Quinlivan, R. Dantrolene as a possible prophylactic treatment for RYR1-related rhabdomyolysis. Eur. J. Neurol. 2016, 23, e56–e57. [Google Scholar] [CrossRef] [Green Version]
- Schweizer, U.; Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. Faseb. J. 2016, 30, 3669–3681. [Google Scholar] [CrossRef] [Green Version]
- Petit, N.; Lescure, A.; Rederstorff, M.; Krol, A.; Moghadaszadeh, B.; Wewer, U.M.; Guicheney, P. Selenoprotein N: An endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum. Mol. Genet. 2003, 12, 1045–1053. [Google Scholar] [CrossRef] [Green Version]
- Tordjman, M.; Dabaj, I.; Laforet, P.; Felter, A.; Ferreiro, A.; Biyoukar, M.; Law-Ye, B.; Zanoteli, E.; Castiglioni, C.; Rendu, J.; et al. Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity. Eur. Radiol. 2018, 28, 5293–5303. [Google Scholar] [CrossRef]
- Hankiewicz, K.; Carlier, R.Y.; Lazaro, L.; Linzoain, J.; Barnerias, C.; Gomez-Andres, D.; Avila-Smirnow, D.; Ferreiro, A.; Estournet, B.; Guicheney, P.; et al. Whole-body muscle magnetic resonance imaging in SEPN1-related myopathy shows a homogeneous and recognizable pattern. Muscle Nerve 2015, 52, 728–735. [Google Scholar] [CrossRef]
- Caggiano, S.; Khirani, S.; Dabaj, I.; Cavassa, E.; Amaddeo, A.; Arroyo, J.O.; Desguerre, I.; Richard, P.; Cutrera, R.; Ferreiro, A.; et al. Diaphragmatic dysfunction in SEPN1-related myopathy. Neuromuscul. Disord. 2017, 27, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Scoto, M.; Cirak, S.; Mein, R.; Feng, L.; Manzur, A.Y.; Robb, S.; Childs, A.M.; Quinlivan, R.M.; Roper, H.; Jones, D.H.; et al. SEPN1-related myopathies: Clinical course in a large cohort of patients. Neurology 2011, 76, 2073–2078. [Google Scholar] [CrossRef] [PubMed]
- Cagliani, R.; Fruguglietti, M.E.; Berardinelli, A.; D’Angelo, M.G.; Prelle, A.; Riva, S.; Napoli, L.; Gorni, K.; Orcesi, S.; Lamperti, C.; et al. New molecular findings in congenital myopathies due to selenoprotein N gene mutations. J. Neurol. Sci. 2011, 300, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Maani, N.; Dowling, J.J. Dynamin 2 (DNM2) as Cause of, and Modifier for, Human Neuromuscular Disease. Neurotherapeutics 2018, 15, 966–975. [Google Scholar] [CrossRef] [Green Version]
- Zuchner, S.; Noureddine, M.; Kennerson, M.; Verhoeven, K.; Claeys, K.; De Jonghe, P.; Merory, J.; Oliveira, S.A.; Speer, M.C.; Stenger, J.E.; et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nat. Genet. 2005, 37, 289–294. [Google Scholar] [CrossRef]
- Fabrizi, G.M.; Ferrarini, M.; Cavallaro, T.; Cabrini, I.; Cerini, R.; Bertolasi, L.; Rizzuto, N. Two novel mutations in dynamin-2 cause axonal Charcot-Marie-Tooth disease. Neurology 2007, 69, 291–295. [Google Scholar] [CrossRef]
- Romero, N.B. Centronuclear myopathies: A widening concept. Neuromuscul. Disord. 2010, 20, 223–228. [Google Scholar] [CrossRef]
- Bitoun, M.; Bevilacqua, J.A.; Prudhon, B.; Maugenre, S.; Taratuto, A.L.; Monges, S.; Lubieniecki, F.; Cances, C.; Uro-Coste, E.; Mayer, M.; et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann. Neurol. 2007, 62, 666–670. [Google Scholar] [CrossRef]
- Werlauff, U.; Petri, H.; Witting, N.; Vissing, J. Frequency and Phenotype of Myotubular Myopathy Amongst Danish Patients with Congenital Myopathy Older than 5 Years. J. Neuromuscul. Dis. 2015, 2, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Echaniz-Laguna, A.; Biancalana, V.; Bohm, J.; Tranchant, C.; Mandel, J.L.; Laporte, J. Adult centronuclear myopathies: A hospital-based study. Rev. Neurol. (Paris) 2013, 169, 625–631. [Google Scholar] [CrossRef]
- Fattori, F.; Maggi, L.; Bruno, C.; Cassandrini, D.; Codemo, V.; Catteruccia, M.; Tasca, G.; Berardinelli, A.; Magri, F.; Pane, M.; et al. Centronuclear myopathies: Genotype-phenotype correlation and frequency of defined genetic forms in an Italian cohort. J. Neurol. 2015, 262, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- Fischer, D.; Herasse, M.; Bitoun, M.; Barragan-Campos, H.M.; Chiras, J.; Laforet, P.; Fardeau, M.; Eymard, B.; Guicheney, P.; Romero, N.B. Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain 2006, 129, 1463–1469. [Google Scholar] [CrossRef] [PubMed]
- Jeub, M.; Bitoun, M.; Guicheney, P.; Kappes-Horn, K.; Strach, K.; Druschky, K.F.; Weis, J.; Fischer, D. Dynamin 2-related centronuclear myopathy: Clinical, histological and genetic aspects of further patients and review of the literature. Clin. Neuropathol. 2008, 27, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Kierdaszuk, B.; Berdynski, M.; Karolczak, J.; Redowicz, M.J.; Zekanowski, C.; Kaminska, A.M. A novel mutation in the DNM2 gene impairs dynamin 2 localization in skeletal muscle of a patient with late onset centronuclear myopathy. Neuromuscul. Disord. 2013, 23, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Bohm, J.; Biancalana, V.; Dechene, E.T.; Bitoun, M.; Pierson, C.R.; Schaefer, E.; Karasoy, H.; Dempsey, M.A.; Klein, F.; Dondaine, N.; et al. Mutation spectrum in the large GTPase dynamin 2, and genotype-phenotype correlation in autosomal dominant centronuclear myopathy. Hum. Mutat. 2012, 33, 949–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catteruccia, M.; Fattori, F.; Codemo, V.; Ruggiero, L.; Maggi, L.; Tasca, G.; Fiorillo, C.; Pane, M.; Berardinelli, A.; Verardo, M.; et al. Centronuclear myopathy related to dynamin 2 mutations: Clinical, morphological, muscle imaging and genetic features of an Italian cohort. Neuromuscul. Disord. 2013, 23, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Romero, N.B.; Bevilacqua, J.A.; Oldfors, A.; Fardeau, M. Sporadic centronuclear myopathy with muscle pseudohypertrophy, neutropenia, and necklace fibres due to a DNM2 mutation. Neuromuscul. Disord. 2011, 21, 148, author reply 148–149. [Google Scholar] [CrossRef]
- Carlier, R.Y.; Quijano-Roy, S. Myoimaging in Congenital Myopathies. Semin. Pediatr. Neurol. 2019, 29, 30–43. [Google Scholar] [CrossRef]
- Schessl, J.; Medne, L.; Hu, Y.; Zou, Y.; Brown, M.J.; Huse, J.T.; Torigian, D.A.; Jungbluth, H.; Goebel, H.H.; Bonnemann, C.G. MRI in DNM2-related centronuclear myopathy: Evidence for highly selective muscle involvement. Neuromuscul. Disord. 2007, 17, 28–32. [Google Scholar] [CrossRef]
- Lee, E.; Marcucci, M.; Daniell, L.; Pypaert, M.; Weisz, O.A.; Ochoa, G.C.; Farsad, K.; Wenk, M.R.; De Camilli, P. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 2002, 297, 1193–1196. [Google Scholar] [CrossRef] [Green Version]
- Nicot, A.S.; Toussaint, A.; Tosch, V.; Kretz, C.; Wallgren-Pettersson, C.; Iwarsson, E.; Kingston, H.; Garnier, J.M.; Biancalana, V.; Oldfors, A.; et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 2007, 39, 1134–1139. [Google Scholar] [CrossRef] [PubMed]
- Bohm, J.; Biancalana, V.; Malfatti, E.; Dondaine, N.; Koch, C.; Vasli, N.; Kress, W.; Strittmatter, M.; Taratuto, A.L.; Gonorazky, H.; et al. Adult-onset autosomal dominant centronuclear myopathy due to BIN1 mutations. Brain 2014, 137, 3160–3170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garibaldi, M.; Bohm, J.; Fattori, F.; Koch, C.; Surace, C.; Ottaviani, P.; Laschena, F.; Laporte, J.; Bertini, E.; Antonini, G.; et al. Novel Dominant Mutation in BIN1 Gene Causing Mild Centronuclear Myopathy Revealed by Myalgias and CK Elevation. J. Neuromuscul. Dis. 2016, 3, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera-Serrano, M.; Mavillard, F.; Biancalana, V.; Rivas, E.; Morar, B.; Hernandez-Lain, A.; Olive, M.; Muelas, N.; Khan, E.; Carvajal, A.; et al. A Roma founder BIN1 mutation causes a novel phenotype of centronuclear myopathy with rigid spine. Neurology 2018, 91, e339–e348. [Google Scholar] [CrossRef] [PubMed]
- Laporte, J.; Hu, L.J.; Kretz, C.; Mandel, J.L.; Kioschis, P.; Coy, J.F.; Klauck, S.M.; Poustka, A.; Dahl, N. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat. Genet. 1996, 13, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Hnia, K.; Tronchere, H.; Tomczak, K.K.; Amoasii, L.; Schultz, P.; Beggs, A.H.; Payrastre, B.; Mandel, J.L.; Laporte, J. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J. Clin. Investig. 2011, 121, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Barth, P.G.; Dubowitz, V. X-linked myotubular myopathy—A long-term follow-up study. Eur. J. Paediatr. Neurol. 1998, 2, 49–56. [Google Scholar] [CrossRef]
- Biancalana, V.; Caron, O.; Gallati, S.; Baas, F.; Kress, W.; Novelli, G.; D’Apice, M.R.; Lagier-Tourenne, C.; Buj-Bello, A.; Romero, N.B.; et al. Characterisation of mutations in 77 patients with X-linked myotubular myopathy, including a family with a very mild phenotype. Hum. Genet. 2003, 112, 135–142. [Google Scholar] [CrossRef]
- Yu, S.; Manson, J.; White, S.; Bourne, A.; Waddy, H.; Davis, M.; Haan, E. X-linked myotubular myopathy in a family with three adult survivors. Clin. Genet. 2003, 64, 148–152. [Google Scholar] [CrossRef]
- Annoussamy, M.; Lilien, C.; Gidaro, T.; Gargaun, E.; Chê, V.; Schara, U.; Gangfuß, A.; D’Amico, A.; Dowling, J.J.; Darras, B.T. X-linked myotubular myopathy: A prospective international natural history study. Neurology 2019, 92, e1852–e1867. [Google Scholar] [CrossRef]
- Hoffjan, S.; Thiels, C.; Vorgerd, M.; Neuen-Jacob, E.; Epplen, J.T.; Kress, W. Extreme phenotypic variability in a German family with X-linked myotubular myopathy associated with E404K mutation in MTM1. Neuromuscul. Disord. 2006, 16, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, V.; Scheidecker, S.; Miguet, M.; Laquerriere, A.; Romero, N.B.; Stojkovic, T.; Abath Neto, O.; Mercier, S.; Voermans, N.; Tanner, L.; et al. Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: Delineating diagnostic clues. Acta Neuropathol. 2017, 134, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Savarese, M.; Musumeci, O.; Giugliano, T.; Rubegni, A.; Fiorillo, C.; Fattori, F.; Torella, A.; Battini, R.; Rodolico, C.; Pugliese, A.; et al. Novel findings associated with MTM1 suggest a higher number of female symptomatic carriers. Neuromuscul. Disord. 2016, 26, 292–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungbluth, H.; Sewry, C.A.; Buj-Bello, A.; Kristiansen, M.; Orstavik, K.H.; Kelsey, A.; Manzur, A.Y.; Mercuri, E.; Wallgren-Pettersson, C.; Muntoni, F. Early and severe presentation of X-linked myotubular myopathy in a girl with skewed X-inactivation. Neuromuscul. Disord. 2003, 13, 55–59. [Google Scholar] [CrossRef]
- Penisson-Besnier, I.; Biancalana, V.; Reynier, P.; Cossee, M.; Dubas, F. Diagnosis of myotubular myopathy in the oldest known manifesting female carrier: A clinical and genetic study. Neuromuscul. Disord. 2007, 17, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, M.; Knudsen, G.P.; Tanner, S.M.; McEntagart, M.; Jungbluth, H.; Muntoni, F.; Sewry, C.; Gallati, S.; Orstavik, K.H.; Wallgren-Pettersson, C. X-inactivation patterns in carriers of X-linked myotubular myopathy. Neuromuscul. Disord. 2003, 13, 468–471. [Google Scholar] [CrossRef]
- Cocanougher, B.T.; Flynn, L.; Yun, P.; Jain, M.; Waite, M.; Vasavada, R.; Wittenbach, J.D.; de Chastonay, S.; Chhibber, S.; Innes, A.M.; et al. Adult MTM1-related myopathy carriers: Classification based on deep phenotyping. Neurology 2019, 93, e1535–e1542. [Google Scholar] [CrossRef]
- Grogan, P.M.; Tanner, S.M.; Orstavik, K.H.; Knudsen, G.P.; Saperstein, D.S.; Vogel, H.; Barohn, R.J.; Herbelin, L.L.; McVey, A.L.; Katz, J.S. Myopathy with skeletal asymmetry and hemidiaphragm elevation is caused by myotubularin mutations. Neurology 2005, 64, 1638–1640. [Google Scholar] [CrossRef]
- Bevilacqua, J.A.; Bitoun, M.; Biancalana, V.; Oldfors, A.; Stoltenburg, G.; Claeys, K.G.; Lacene, E.; Brochier, G.; Manere, L.; Laforet, P.; et al. “Necklace” fibers, a new histological marker of late-onset MTM1-related centronuclear myopathy. Acta Neuropathol. 2009, 117, 283–291. [Google Scholar] [CrossRef]
- Yuen, M.; Ottenheijm, C.A.C. Nebulin: Big protein with big responsibilities. J. Muscle Res. Cell. Motil. 2020, 41, 103–124. [Google Scholar] [CrossRef] [Green Version]
- Romero, N.B.; Sandaradura, S.A.; Clarke, N.F. Recent advances in nemaline myopathy. Curr. Opin. Neurol. 2013, 26, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Malfatti, E.; Lehtokari, V.L.; Bohm, J.; De Winter, J.M.; Schaffer, U.; Estournet, B.; Quijano-Roy, S.; Monges, S.; Lubieniecki, F.; Bellance, R.; et al. Muscle histopathology in nebulin-related nemaline myopathy: Ultrastrastructural findings correlated to disease severity and genotype. Acta Neuropathol. Commun. 2014, 2, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallgren-Pettersson, C.; Sewry, C.A.; Nowak, K.J.; Laing, N.G. Nemaline myopathies. Semin. Pediatr. Neurol. 2011, 18, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Wallgren-Pettersson, C.; Lehtokari, V.L.; Kalimo, H.; Paetau, A.; Nuutinen, E.; Hackman, P.; Sewry, C.; Pelin, K.; Udd, B. Distal myopathy caused by homozygous missense mutations in the nebulin gene. Brain 2007, 130, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, K.; Yamashita, T.; Motokura, E.; Takahashi, Y.; Sato, K.; Takemoto, M.; Hishikawa, N.; Ohta, Y.; Nishikawa, A.; Nishino, I.; et al. A patient with slowly progressive adult-onset nemaline myopathy and novel compound heterozygous mutations in the nebulin gene. J. Neurol. Sci. 2017, 373, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Milone, M.; Liewluck, T. The unfolding spectrum of inherited distal myopathies. Muscle Nerve 2019, 59, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Huxley, A.F.; Niedergerke, R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 1954, 173, 971–973. [Google Scholar] [CrossRef]
- Nowak, K.J.; Ravenscroft, G.; Laing, N.G. Skeletal muscle alpha-actin diseases (actinopathies): Pathology and mechanisms. Acta Neuropathol. 2013, 125, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, P.B.; Strickland, C.D.; Midgett, C.; Morales, A.; Newburger, D.E.; Poulos, M.A.; Tomczak, K.K.; Ryan, M.M.; Iannaccone, S.T.; Crawford, T.O.; et al. Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann. Neurol. 2004, 56, 86–96. [Google Scholar] [CrossRef]
- Kao, J.C.; Liewluck, T.; Milone, M. A novel ACTA1 mutation causing progressive facioscapuloperoneal myopathy in an adult. J. Clin. Neurosci. 2018, 53, 261–262. [Google Scholar] [CrossRef]
- Zukosky, K.; Meilleur, K.; Traynor, B.J.; Dastgir, J.; Medne, L.; Devoto, M.; Collins, J.; Rooney, J.; Zou, Y.; Yang, M.L.; et al. Association of a Novel ACTA1 Mutation With a Dominant Progressive Scapuloperoneal Myopathy in an Extended Family. JAMA Neurol. 2015, 72, 689–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungbluth, H.; Sewry, C.A.; Brown, S.C.; Nowak, K.J.; Laing, N.G.; Wallgren-Pettersson, C.; Pelin, K.; Manzur, A.Y.; Mercuri, E.; Dubowitz, V.; et al. Mild phenotype of nemaline myopathy with sleep hypoventilation due to a mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscul. Disord. 2001, 11, 35–40. [Google Scholar] [CrossRef]
- Perry, S.V. Vertebrate tropomyosin: Distribution, properties and function. J. Muscle Res. Cell. Motil. 2001, 22, 5–49. [Google Scholar] [CrossRef] [PubMed]
- Gunning, P.W.; Hardeman, E.C.; Lappalainen, P.; Mulvihill, D.P. Tropomyosin-master regulator of actin filament function in the cytoskeleton. J. Cell Sci. 2015, 128, 2965–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, A.M.; Homsher, E.; Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 2000, 80, 853–924. [Google Scholar] [CrossRef] [PubMed]
- Marttila, M.; Lehtokari, V.L.; Marston, S.; Nyman, T.A.; Barnerias, C.; Beggs, A.H.; Bertini, E.; Ceyhan-Birsoy, O.; Cintas, P.; Gerard, M.; et al. Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies. Hum. Mutat. 2014, 35, 779–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, A.E.; Siddiqui, F.M.; Lopez, M.A.; Lunt, P.; Carlson, H.A.; Moore, B.E.; Love, S.; Born, D.E.; Roper, H.; Majumdar, A.; et al. Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. Brain 2013, 136, 508–521. [Google Scholar] [CrossRef] [Green Version]
- Tajsharghi, H.; Ohlsson, M.; Palm, L.; Oldfors, A. Myopathies associated with beta-tropomyosin mutations. Neuromuscul. Disord. 2012, 22, 923–933. [Google Scholar] [CrossRef]
- Citirak, G.; Witting, N.; Duno, M.; Werlauff, U.; Petri, H.; Vissing, J. Frequency and phenotype of patients carrying TPM2 and TPM3 gene mutations in a cohort of 94 patients with congenital myopathy. Neuromuscul. Disord. 2014, 24, 325–330. [Google Scholar] [CrossRef]
- Schreckenbach, T.; Schroder, J.M.; Voit, T.; Abicht, A.; Neuen-Jacob, E.; Roos, A.; Bulst, S.; Kuhl, C.; Schulz, J.B.; Weis, J.; et al. Novel TPM3 mutation in a family with cap myopathy and review of the literature. Neuromuscul. Disord. 2014, 24, 117–124. [Google Scholar] [CrossRef]
- Kiphuth, I.C.; Krause, S.; Huttner, H.B.; Dekomien, G.; Struffert, T.; Schroder, R. Autosomal dominant nemaline myopathy caused by a novel alpha-tropomyosin 3 mutation. J. Neurol. 2010, 257, 658–660. [Google Scholar] [CrossRef] [PubMed]
- Anandan, C.; Milone, M. An adult with a rare form of congenital fiber type disproportion. Muscle Nerve 2018, 57, E97–E99. [Google Scholar] [CrossRef] [PubMed]
- Mokbel, N.; Ilkovski, B.; Kreissl, M.; Memo, M.; Jeffries, C.M.; Marttila, M.; Lehtokari, V.L.; Lemola, E.; Gronholm, M.; Yang, N.; et al. K7del is a common TPM2 gene mutation associated with nemaline myopathy and raised myofibre calcium sensitivity. Brain 2013, 136, 494–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bang, M.L.; Mudry, R.E.; McElhinny, A.S.; Trombitas, K.; Geach, A.J.; Yamasaki, R.; Sorimachi, H.; Granzier, H.; Gregorio, C.C.; Labeit, S. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell. Biol. 2001, 153, 413–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyatake, S.; Mitsuhashi, S.; Hayashi, Y.K.; Purevjav, E.; Nishikawa, A.; Koshimizu, E.; Suzuki, M.; Yatabe, K.; Tanaka, Y.; Ogata, K.; et al. Biallelic Mutations in MYPN, Encoding Myopalladin, Are Associated with Childhood-Onset, Slowly Progressive Nemaline Myopathy. Am. J. Hum. Genet. 2017, 100, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Schroder, J.M.; Durling, H.; Laing, N. Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Acta Neuropathol. 2004, 108, 250–256. [Google Scholar] [CrossRef]
- Lornage, X.; Malfatti, E.; Cheraud, C.; Schneider, R.; Biancalana, V.; Cuisset, J.M.; Garibaldi, M.; Eymard, B.; Fardeau, M.; Boland, A.; et al. Recessive MYPN mutations cause cap myopathy with occasional nemaline rods. Ann. Neurol. 2017, 81, 467–473. [Google Scholar] [CrossRef]
- Merlini, L.; Sabatelli, P.; Antoniel, M.; Carinci, V.; Niro, F.; Monetti, G.; Torella, A.; Giugliano, T.; Faldini, C.; Nigro, V. Congenital myopathy with hanging big toe due to homozygous myopalladin (MYPN) mutation. Skelet. Muscle 2019, 9, 14. [Google Scholar] [CrossRef]
- Garg, A.; O’Rourke, J.; Long, C.; Doering, J.; Ravenscroft, G.; Bezprozvannaya, S.; Nelson, B.R.; Beetz, N.; Li, L.; Chen, S.; et al. KLHL40 deficiency destabilizes thin filament proteins and promotes nemaline myopathy. J. Clin. Investig. 2014, 124, 3529–3539. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, M.; He, Y.J.; Borchers, C.; Xiong, Y. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell. Biol. 2003, 5, 1001–1007. [Google Scholar] [CrossRef]
- Canning, P.; Cooper, C.D.; Krojer, T.; Murray, J.W.; Pike, A.C.; Chaikuad, A.; Keates, T.; Thangaratnarajah, C.; Hojzan, V.; Ayinampudi, V.; et al. Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. J. Biol. Chem. 2013, 288, 7803–7814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravenscroft, G.; Miyatake, S.; Lehtokari, V.L.; Todd, E.J.; Vornanen, P.; Yau, K.S.; Hayashi, Y.K.; Miyake, N.; Tsurusaki, Y.; Doi, H.; et al. Mutations in KLHL40 are a frequent cause of severe autosomal-recessive nemaline myopathy. Am. J. Hum. Genet. 2013, 93, 6–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.A.; Ravenscroft, G.; Shaheen, R.; Todd, E.J.; Swanson, L.C.; Shiina, M.; Ogata, K.; Hsu, C.; Clarke, N.F.; Darras, B.T.; et al. Identification of KLHL41 Mutations Implicates BTB-Kelch-Mediated Ubiquitination as an Alternate Pathway to Myofibrillar Disruption in Nemaline Myopathy. Am. J. Hum. Genet. 2013, 93, 1108–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jirka, C.; Pak, J.H.; Grosgogeat, C.A.; Marchetii, M.M.; Gupta, V.A. Dysregulation of NRAP degradation by KLHL41 contributes to pathophysiology in Nemaline Myopathy. Hum. Mol. Genet. 2019. [Google Scholar] [CrossRef]
- Campbell, S.G.; Niederer, S.A. KBTBD13 and the ever-expanding sarcomeric universe. J. Clin. Investig. 2020, 130, 593–594. [Google Scholar] [CrossRef]
- De Winter, J.M.; Molenaar, J.P.; Yuen, M.; van der Pijl, R.; Shen, S.; Conijn, S.; van de Locht, M.; Willigenburg, M.; Bogaards, S.J.; van Kleef, E.S.; et al. KBTBD13 is an actin-binding protein that modulates muscle kinetics. J. Clin. Investig. 2020, 130, 754–767. [Google Scholar] [CrossRef] [Green Version]
- Kang, Z.X.; Wei, X.J.; Miao, J.; Gao, Y.L.; Wang, Z.Y.; Yu, X.F. A family with nemaline myopathy type 6 caused by hseterozygous mutation (c.1222C>T) in the KBTBD13 gene in China: A case report. Neuropathology 2020, 40, 104–108. [Google Scholar] [CrossRef]
- Olive, M.; Goldfarb, L.G.; Lee, H.S.; Odgerel, Z.; Blokhin, A.; Gonzalez-Mera, L.; Moreno, D.; Laing, N.G.; Sambuughin, N. Nemaline myopathy type 6: Clinical and myopathological features. Muscle Nerve 2010, 42, 901–907. [Google Scholar] [CrossRef] [Green Version]
- Garibaldi, M.; Fattori, F.; Bortolotti, C.A.; Brochier, G.; Labasse, C.; Verardo, M.; Servian-Morilla, E.; Gibellini, L.; Pinti, M.; Di Rocco, G.; et al. Core-rod myopathy due to a novel mutation in BTB/POZ domain of KBTBD13 manifesting as late onset LGMD. Acta Neuropathol. Commun. 2018, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Yuen, M.; Sandaradura, S.A.; Dowling, J.J.; Kostyukova, A.S.; Moroz, N.; Quinlan, K.G.; Lehtokari, V.L.; Ravenscroft, G.; Todd, E.J.; Ceyhan-Birsoy, O.; et al. Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J. Clin. Investig. 2015, 125, 456–457. [Google Scholar] [CrossRef] [Green Version]
- Schatz, U.A.; Weiss, S.; Wenninger, S.; Schoser, B.; Muss, W.H.; Bittner, R.E.; Schmidt, W.M.; Schossig, A.S.; Rudnik-Schoneborn, S.; Baumann, M. Evidence of mild founder LMOD3 mutations causing nemaline myopathy 10 in Germany and Austria. Neurology 2018, 91, e1690–e1694. [Google Scholar] [CrossRef] [PubMed]
- Marguet, F.; Rendu, J.; Vanhulle, C.; Bedat-Millet, A.L.; Brehin, A.C.; Faure, J.; Laquerriere, A. Association of fingerprint bodies with rods in a case with mutations in the LMOD3 gene. Neuromuscul. Disord. 2020, 30, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Kuzuhara, S.; Nakanishi, T. Tubulomembranous and fingerprint-like inclusions in biopsied muscle of distal myopathy with rimmed vacuoles. Acta Neuropathol. 1984, 62, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, T.; Maurage, C.A.; Moerman, A.; Hurtevent, J.F.; Krivosic-Horber, R.; Pellissier, J.F.; Vermersch, P. Congenital myopathy with central cores and fingerprint bodies in association with malignant hyperthermia susceptibility. Neuromuscul. Disord. 2001, 11, 538–541. [Google Scholar] [CrossRef]
- Jadro-Santel, D.; Grcevic, N.; Dogan, S.; Franjic, J.; Benc, H. Centronuclear myopathy with type I fibre hypotrophy and “fingerprint” inclusions associated with Marfan’s syndrome. J. Neurol. Sci. 1980, 45, 43–56. [Google Scholar] [CrossRef]
- Gordon, A.S.; Rewcastle, N.B.; Humphrey, J.G.; Stewart, B.M. Chronic benign congenital myopathy: Fingerprint body type. Can. J. Neurol. Sci. 1974, 1, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro Ede, A., Jr.; Pinotsis, N.; Ghisleni, A.; Salmazo, A.; Konarev, P.V.; Kostan, J.; Sjoblom, B.; Schreiner, C.; Polyansky, A.A.; Gkougkoulia, E.A.; et al. The structure and regulation of human muscle alpha-actinin. Cell 2014, 159, 1447–1460. [Google Scholar] [CrossRef] [Green Version]
- Savarese, M.; Palmio, J.; Poza, J.J.; Weinberg, J.; Olive, M.; Cobo, A.M.; Vihola, A.; Jonson, P.H.; Sarparanta, J.; García-Bragado, F. Actininopathy: A new muscular dystrophy caused by ACTN2 dominant mutations. Ann. Neurol. 2019, 85, 899–906. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Jin, J.P. TNNT1, TNNT2, and TNNT3: Isoform genes, regulation, and structure-function relationships. Gene 2016, 582, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Clarke, N.F. Skeletal muscle disease due to mutations in tropomyosin, troponin and cofilin. Adv. Exp. Med. Biol. 2008, 642, 40–54. [Google Scholar] [CrossRef]
- Konersman, C.G.; Freyermuth, F.; Winder, T.L.; Lawlor, M.W.; Lagier-Tourenne, C.; Patel, S.B. Novel autosomal dominant TNNT1 mutation causing nemaline myopathy. Mol. Genet. Genom. Med. 2017, 5, 678–691. [Google Scholar] [CrossRef] [PubMed]
- Beam, T.A.; Loudermilk, E.F.; Kisor, D.F. Pharmacogenetics and pathophysiology of CACNA1S mutations in malignant hyperthermia. Physiol. Genom. 2017, 49, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, D.; Maisonobe, T.; Jurkat-Rott, K.; Nicole, S.; Launay, E.; Chauveau, D.; Tabti, N.; Lehmann-Horn, F.; Hainque, B.; Fontaine, B. Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain 2001, 124, 1091–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schartner, V.; Romero, N.B.; Donkervoort, S.; Treves, S.; Munot, P.; Pierson, T.M.; Dabaj, I.; Malfatti, E.; Zaharieva, I.T.; Zorzato, F.; et al. Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy. Acta Neuropathol. 2017, 133, 517–533. [Google Scholar] [CrossRef]
- Yis, U.; Hiz, S.; Gunes, S.; Diniz, G.; Baydan, F.; Topf, A.; Sonmezler, E.; Lochmuller, H.; Horvath, R.; Oktay, Y. Dihydropyridine Receptor Congenital Myopathy In A Consangineous Turkish Family. J. Neuromuscul. Dis. 2019, 6, 377–384. [Google Scholar] [CrossRef]
- Bertocchini, F.; Ovitt, C.E.; Conti, A.; Barone, V.; Scholer, H.R.; Bottinelli, R.; Reggiani, C.; Sorrentino, V. Requirement for the ryanodine receptor type 3 for efficient contraction in neonatal skeletal muscles. EMBO J. 1997, 16, 6956–6963. [Google Scholar] [CrossRef]
- Hackman, P.; Udd, B.; Bonnemann, C.G.; Ferreiro, A. 219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April-1 May 2016. Neuromuscul. Disord. 2017, 27, 396–407. [Google Scholar] [CrossRef] [Green Version]
- Dowling, J.J. Titin and centronuclear myopathy: The tip of the iceberg for TTN-ic mutations? Neurology 2013, 81, 1189–1190. [Google Scholar] [CrossRef]
- Martinez-Thompson, J.M.; Winder, T.L.; Liewluck, T. Centronuclear myopathy with cardiomyopathy due to recessive titinopathy. Muscle Nerve 2019, 59, E26–E27. [Google Scholar] [CrossRef]
- Nagase, T.; Nakayama, M.; Nakajima, D.; Kikuno, R.; Ohara, O. Prediction of the coding sequences of unidentified human genes. XX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. Dna Res. 2001, 8, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Holterman, C.E.; Le Grand, F.; Kuang, S.; Seale, P.; Rudnicki, M.A. Megf10 regulates the progression of the satellite cell myogenic program. J. Cell. Biol. 2007, 179, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Boyden, S.E.; Mahoney, L.J.; Kawahara, G.; Myers, J.A.; Mitsuhashi, S.; Estrella, E.A.; Duncan, A.R.; Dey, F.; DeChene, E.T.; Blasko-Goehringer, J.M.; et al. Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores. Neurogenetics 2012, 13, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liewluck, T.; Milone, M.; Tian, X.; Engel, A.G.; Staff, N.P.; Wong, L.J. Adult-onset respiratory insufficiency, scoliosis, and distal joint hyperlaxity in patients with multiminicore disease due to novel Megf10 mutations. Muscle Nerve 2016, 53, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.; Marini-Bettolo, C.; Topf, A.; Barresi, R.; Polvikoski, T.; Bailey, G.; Charlton, R.; Tellez, J.; MacArthur, D.; Guglieri, M.; et al. MEGF10 related myopathies: A new case with adult onset disease with prominent respiratory failure and review of reported phenotypes. Neuromuscul. Disord. 2018, 28, 48–53. [Google Scholar] [CrossRef]
- Fiorillo, C.; Astrea, G.; Savarese, M.; Cassandrini, D.; Brisca, G.; Trucco, F.; Pedemonte, M.; Trovato, R.; Ruggiero, L.; Vercelli, L.; et al. MYH7-related myopathies: Clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J. Rare Dis. 2016, 11, 91. [Google Scholar] [CrossRef] [Green Version]
- Masuzugawa, S.; Kuzuhara, S.; Narita, Y.; Naito, Y.; Taniguchi, A.; Ibi, T. Autosomal dominant hyaline body myopathy presenting as scapuloperoneal syndrome: Clinical features and muscle pathology. Neurology 1997, 48, 253–257. [Google Scholar] [CrossRef]
- Barohn, R.J.; Brumback, R.A.; Mendell, J.R. Hyaline body myopathy. Neuromuscul. Disord. 1994, 4, 257–262. [Google Scholar] [CrossRef]
- Tajsharghi, H.; Oldfors, A.; Swash, M. Myosin storage myopathy with cardiomyopathy. Neuromuscul. Disord. 2007, 17, 725. [Google Scholar] [CrossRef]
- Finsterer, J.; Brandau, O.; Stollberger, C.; Wallefeld, W.; Laing, N.G.; Laccone, F. Distal myosin heavy chain-7 myopathy due to the novel transition c.5566G>A (p.E1856K) with high interfamilial cardiac variability and putative anticipation. Neuromuscul. Disord. 2014, 24, 721–725. [Google Scholar] [CrossRef]
- Laing, N.G.; Ceuterick-de Groote, C.; Dye, D.E.; Liyanage, K.; Duff, R.M.; Dubois, B.; Robberecht, W.; Sciot, R.; Martin, J.J.; Goebel, H.H. Myosin storage myopathy: Slow skeletal myosin (MYH7) mutation in two isolated cases. Neurology 2005, 64, 527–529. [Google Scholar] [CrossRef]
- Darin, N.; Tajsharghi, H.; Ostman-Smith, I.; Gilljam, T.; Oldfors, A. New skeletal myopathy and cardiomyopathy associated with a missense mutation in MYH7. Neurology 2007, 68, 2041–2042. [Google Scholar] [CrossRef] [PubMed]
- Overeem, S.; Schelhaas, H.J.; Blijham, P.J.; Grootscholten, M.I.; ter Laak, H.J.; Timmermans, J.; van den Wijngaard, A.; Zwarts, M.J. Symptomatic distal myopathy with cardiomyopathy due to a MYH7 mutation. Neuromuscul. Disord. 2007, 17, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Udd, B. 165th ENMC International Workshop: Distal myopathies 6-8th February 2009 Naarden, The Netherlands. Neuromuscul. Disord. 2009, 19, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Lamont, P.J.; Udd, B.; Mastaglia, F.L.; de Visser, M.; Hedera, P.; Voit, T.; Bridges, L.R.; Fabian, V.; Rozemuller, A.; Laing, N.G. Laing early onset distal myopathy: Slow myosin defect with variable abnormalities on muscle biopsy. J. Neurol. Neurosurg. Psychiatry 2006, 77, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Muelas, N.; Hackman, P.; Luque, H.; Garces-Sanchez, M.; Azorin, I.; Suominen, T.; Sevilla, T.; Mayordomo, F.; Gomez, L.; Marti, P.; et al. MYH7 gene tail mutation causing myopathic profiles beyond Laing distal myopathy. Neurology 2010, 75, 732–741. [Google Scholar] [CrossRef]
- Tasca, G.; Ricci, E.; Penttila, S.; Monforte, M.; Giglio, V.; Ottaviani, P.; Camastra, G.; Silvestri, G.; Udd, B. New phenotype and pathology features in MYH7-related distal myopathy. Neuromuscul. Disord. 2012, 22, 640–647. [Google Scholar] [CrossRef]
- Lamont, P.J.; Wallefeld, W.; Hilton-Jones, D.; Udd, B.; Argov, Z.; Barboi, A.C.; Bonneman, C.; Boycott, K.M.; Bushby, K.; Connolly, A.M.; et al. Novel mutations widen the phenotypic spectrum of slow skeletal/beta-cardiac myosin (MYH7) distal myopathy. Hum. Mutat. 2014, 35, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Naddaf, E.; Waclawik, A.J. Two families with MYH7 distal myopathy associated with cardiomyopathy and core formations. J. Clin. Neuromuscul. Dis. 2015, 16, 164–169. [Google Scholar] [CrossRef]
- Dubourg, O.; Maisonobe, T.; Behin, A.; Suominen, T.; Raheem, O.; Penttila, S.; Parton, M.; Eymard, B.; Dahl, A.; Udd, B. A novel MYH7 mutation occurring independently in French and Norwegian Laing distal myopathy families and de novo in one Finnish patient. J. Neurol. 2011, 258, 1157–1163. [Google Scholar] [CrossRef]
- Clarke, N.F.; Amburgey, K.; Teener, J.; Camelo-Piragua, S.; Kesari, A.; Punetha, J.; Waddell, L.B.; Davis, M.; Laing, N.G.; Monnier, N.; et al. A novel mutation expands the genetic and clinical spectrum of MYH7-related myopathies. Neuromuscul. Disord. 2013, 23, 432–436. [Google Scholar] [CrossRef] [Green Version]
- Tajsharghi, H.; Hilton-Jones, D.; Raheem, O.; Saukkonen, A.M.; Oldfors, A.; Udd, B. Human disease caused by loss of fast IIa myosin heavy chain due to recessive MYH2 mutations. Brain 2010, 133, 1451–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondelle, J.; Ohno, Y.; Gache, V.; Guyot, S.; Storck, S.; Blanchard-Gutton, N.; Barthelemy, I.; Walmsley, G.; Rahier, A.; Gadin, S.; et al. HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth. J. Mol. Cell. Biol. 2015, 7, 429–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, E.; Reish, O.; Ohno, Y.; Scheetz, T.; Deluca, A.; Searby, C.; Regev, M.; Benyamini, L.; Fellig, Y.; Kihara, A.; et al. Congenital myopathy is caused by mutation of HACD1. Hum. Mol. Genet. 2013, 22, 5229–5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, S.C. Sodium Channelopathies of Skeletal Muscle. Handb. Exp. Pharm. 2018, 246, 309–330. [Google Scholar] [CrossRef]
- Zaharieva, I.T.; Thor, M.G.; Oates, E.C.; van Karnebeek, C.; Hendson, G.; Blom, E.; Witting, N.; Rasmussen, M.; Gabbett, M.T.; Ravenscroft, G.; et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or ‘classical’ congenital myopathy. Brain 2016, 139, 674–691. [Google Scholar] [CrossRef] [Green Version]
- Gonorazky, H.D.; Marshall, C.R.; Al-Murshed, M.; Hazrati, L.N.; Thor, M.G.; Hanna, M.G.; Mannikko, R.; Ray, P.N.; Yoon, G. Congenital myopathy with “corona” fibres, selective muscle atrophy, and craniosynostosis associated with novel recessive mutations in SCN4A. Neuromuscul. Disord. 2017, 27, 574–580. [Google Scholar] [CrossRef]
- Sloth, C.K.; Denti, F.; Schmitt, N.; Bentzen, B.H.; Fagerberg, C.; Vissing, J.; Gaist, D. Homozygosity for SCN4A Arg1142Gln causes congenital myopathy with variable disease expression. Neurol. Genet. 2018, 4, e267. [Google Scholar] [CrossRef] [Green Version]
- Tein, I.; Elpeleg, O.; Ben-Zeev, B.; Korman, S.H.; Lossos, A.; Lev, D.; Lerman-Sagie, T.; Leshinsky-Silver, E.; Vockley, J.; Berry, G.T.; et al. Short-chain acyl-CoA dehydrogenase gene mutation (c.319C>T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol. Genet. Metab. 2008, 93, 179–189. [Google Scholar] [CrossRef]
- Carmignac, V.; Salih, M.A.; Quijano-Roy, S.; Marchand, S.; Al Rayess, M.M.; Mukhtar, M.M.; Urtizberea, J.A.; Labeit, S.; Guicheney, P.; Leturcq, F.; et al. C-terminal titin deletions cause a novel early-onset myopathy with fatal cardiomyopathy. Ann. Neurol. 2007, 61, 340–351. [Google Scholar] [CrossRef]
- Majczenko, K.; Davidson, A.E.; Camelo-Piragua, S.; Agrawal, P.B.; Manfready, R.A.; Li, X.; Joshi, S.; Xu, J.; Peng, W.; Beggs, A.H.; et al. Dominant mutation of CCDC78 in a unique congenital myopathy with prominent internal nuclei and atypical cores. Am. J. Hum. Genet. 2012, 91, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Jungbluth, H.; Ochala, J.; Treves, S.; Gautel, M. Current and future therapeutic approaches to the congenital myopathies. Semin. Cell Dev. Biol. 2017, 64, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amburgey, K.; McNamara, N.; Bennett, L.R.; McCormick, M.E.; Acsadi, G.; Dowling, J.J. Prevalence of congenital myopathies in a representative pediatric united states population. Ann. Neurol. 2011, 70, 662–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, M.M.; Schnell, C.; Strickland, C.D.; Shield, L.K.; Morgan, G.; Iannaccone, S.T.; Laing, N.G.; Beggs, A.H.; North, K.N. Nemaline myopathy: A clinical study of 143 cases. Ann. Neurol. 2001, 50, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-E.; Shin, J.-H.; Kim, H.S.; Lee, C.-H.; Kim, D.-S. Characterization of congenital myopathies at a Korean neuromuscular center. Muscle Nerve 2018, 58, 235–244. [Google Scholar] [CrossRef]
- Susman, R.D.; Quijano-Roy, S.; Yang, N.; Webster, R.; Clarke, N.F.; Dowling, J.; Kennerson, M.; Nicholson, G.; Biancalana, V.; Ilkovski, B.; et al. Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul. Disord. 2010, 20, 229–237. [Google Scholar] [CrossRef]
- Petri, H.; Wahbi, K.; Witting, N.; Kober, L.; Bundgaard, H.; Kamoun, E.; Vellieux, G.; Stojkovic, T.; Behin, A.; Laforet, P.; et al. Congenital myopathies are mainly associated with a mild cardiac phenotype. J. Neurol. 2019, 266, 1367–1375. [Google Scholar] [CrossRef]
- Feingold, B.; Mahle, W.T.; Auerbach, S.; Clemens, P.; Domenighetti, A.A.; Jefferies, J.L.; Judge, D.P.; Lal, A.K.; Markham, L.W.; Parks, W.J.; et al. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation 2017, 136, e200–e231. [Google Scholar] [CrossRef] [Green Version]
Causative Genes | Protein | Mode of Inheritance | Main Histopathological Findings |
---|---|---|---|
ACTA1 | Alpha actin | AD, AR | nemaline rods (also intranuclear), cores, CFTD, actin aggregates, caps, zebra bodies |
ACTN2 | Actinin alpha 2 | AD | cores, rimmed vacuoles, eosinophilic inclusions, lobulated muscle fibers |
BIN1 | amphiphysin | AD, AR | central nuclei |
CACNA1S | Calcium channel voltage-dependent, L type, alpha 1S subunit | AR | central nuclei, cores |
CCDC78 | Coiled-coil domain-containing protein 78 | AD | cores, central nuclei |
CFL2 | Cofilin 2 | AR | nemaline rods |
DNM2 | Dynamin 2 | AD | central nuclei, radiating sarcoplasmic strands |
FXR1 | FMR1 autosomal homolog | AR | Cores |
HACD1 | Protein tyrosine phosphatase-like | AR | CFTD |
KBTBD13 | Kelch repeat and BTB (POZ) domain containing 13 | AD | nemaline rods, cores, type 2 hypotrophy |
KLHL40 | Kelch-like family member 40 | AR | nemaline rods |
KLHL41 | Kelch-like family member 41 | AR | nemaline rods |
LMOD3 | Leiomodin 3 | AR | nemaline rods, fingerprint bodies |
MEGF10 | Multiple EGF-like-domains 10 | AR | minicores |
MTM1 | myotubularin | XR | central nuclei, necklace fibers |
MYF6 | Myogenic factor 6 | AD | central nuclei |
MYH2 | Myosin, heavy chain 2 | AD, AR | few and small type 2 fibers, rimmed vacuoles |
MYH7 | Myosin, heavy chain 7 | AD, AR | cores, CFTD, myosin storage, rimmed vacuoles |
MYL2 | Myosin light chain 2 | AR | CFTD |
MYO18B | Myosin XVIIIB | AR | nemaline rods |
MYPN | Myopalladin | AR | nemaline rods (also intranuclear) |
NEB | Nebulin | AR | nemaline rods |
RYR1 | Ryanodine receptor 1 | AD, AR | cores (minicores), central nuclei, CFTD |
RYR3 | Ryanodine receptor 3 | AR | nemaline rods |
SCN4A | Sodium channel voltage-gated, type IV, alpha | AR | CFTD |
SEPN1 | Selenoprotein N1 | AR | minicores, CFTD |
SPEG | SPEG complex locus | AR | central nuclei |
TNNT1 | Slow troponin T | AR | nemaline rods |
TNNT3 | Fast troponin 3 | AR | nemaline rods |
TPM2 | Tropomyosin 2 | AD, AR | nemaline rods, CFTD, caps |
TPM3 | Tropomyosin 3 | AD, AR | nemaline rods, CFTD, caps |
TTN | Titin | AR | cores, central nuclei, CFTD |
ZAK | mitogen-activated protein triple kinase | AR | central nuclei |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadimas, G.K.; Xirou, S.; Kararizou, E.; Papadopoulos, C. Update on Congenital Myopathies in Adulthood. Int. J. Mol. Sci. 2020, 21, 3694. https://doi.org/10.3390/ijms21103694
Papadimas GK, Xirou S, Kararizou E, Papadopoulos C. Update on Congenital Myopathies in Adulthood. International Journal of Molecular Sciences. 2020; 21(10):3694. https://doi.org/10.3390/ijms21103694
Chicago/Turabian StylePapadimas, George Konstantinos, Sophia Xirou, Evangelia Kararizou, and Constantinos Papadopoulos. 2020. "Update on Congenital Myopathies in Adulthood" International Journal of Molecular Sciences 21, no. 10: 3694. https://doi.org/10.3390/ijms21103694
APA StylePapadimas, G. K., Xirou, S., Kararizou, E., & Papadopoulos, C. (2020). Update on Congenital Myopathies in Adulthood. International Journal of Molecular Sciences, 21(10), 3694. https://doi.org/10.3390/ijms21103694