Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models
Abstract
:1. Introduction
2. Results
2.1. Effect of Modeled µg on In Vivo Model of Sutured Wound Healing
2.1.1. Histological Analysis
2.1.2. Analysis of Collagen Fibres
2.1.3. Analysis of Elastic Fibres
2.2. Effect of Modeled µg and PRP on In Vivo Model of Sutured Wound Healing
2.2.1. Morphological Analysis
2.2.2. Analysis of Collagen Fibres
2.2.3. Analysis of Elastic Fibres
2.3. Effect of Modeled µg and PRP on In Vitro Model of Wound Healing
2.3.1. Morphological Changes
2.3.2. Cell Count
2.3.3. Cell Migration
2.3.4. Gene Expression
3. Discussion
4. Materials and Methods
4.1. Animals and Surgical Treatment
4.2. Exposure to Modeled µg—Leeches
4.3. PRP Preparation
4.4. Random Positioning Machine Exposure
4.5. Histological and Morphometrical Analysis
4.6. Cell Culture
4.7. Exposure to Modeled µg—Cells
- Group C—control samples, maintained for 72 h at 1× g;
- Group µg—samples exposed for 72 h to µg modeled by RPM;
- Group C + PRP—samples treated with PRP, maintained for 72 h at 1× g;
- Group µg + PRP—samples treated with PRP, exposed for 72 h to µg modeled by RPM.
4.8. Cell Count
4.9. Migration Assays
4.9.1. Scratch Test
4.9.2. Boyden Chamber Assay
4.9.3. Gene Expression
4.9.4. RNA Extraction, Purification and Quantitation
4.9.5. Quantitative Real-Time PCR
- Alpha-SMA: 5′-CCCTGAAGAGCATCCGACAC-3′ and 5′ GCATAGCCCTCATAGATAGGCA-3′;
- VEGF: 5′-AAAACACAGACTCGCGTTGC-3′ and 5′-CTCCTAGGCCCCTCAGAAGT-3′;
- GAPDH: 5′-CCTGCGACTTCAACAGCAAC-3′ and 5′-TAGGGCCTCTCTTGCTCAGT-3′.
4.10. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PRP | Platelet rich plasma |
MMPs | Matrix metalloproteases |
RPM | Random positioning machine |
NIH-3T3 | Fibroblasts (mouse, NIH Swiss, embryo) |
DMEM | Dulbecco’s modified Eagle medium |
FCS | Fetal calf serum |
FBS | Fetal bovine serum |
BSA | Bovine serum albumin |
αSMA | Alfa smooth muscle actin |
VEGF | Vascular endothelial growth factor |
ECM | Extracellular matrix |
RCCS | Rotating cell culture system |
References
- Yanez, D.A.; Lacher, R.K.; Vidyarthi, A.; Colegio, O.R. The role of macrophages in skin homeostasis. Pflügers Arch. 2017, 469, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef]
- Posnett, J.; Franks, P. The burden of chronic wounds in the UK. Nurs. Times 2008, 104, 44–45. [Google Scholar]
- Posnett, J.; Gottrup, F.; Lundgren, H.; Saal, G. The resource impact of wounds on health-care providers in Europe. J. Wound Care 2009, 18, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review. Syst. Rev. 2016, 5, 152. [Google Scholar] [CrossRef] [Green Version]
- Tuner, J.; Hode, L. Laser Therapy Handbook: A Guide for Research Scientists, Doctors, Dentists, Veterinarians and other Interested Parties within the Medical Field; Prima Books: Grangesberg, Sweden, 2004. [Google Scholar]
- Alster, T.; Zaulyanov-Scanlon, L. Laser scar revision: A review. Dermatol. Surg. 2007, 33, 131–140. [Google Scholar] [PubMed]
- Shah, J.B. The history of wound care. J. Am. Coll. Certif. Wound Spec. 2011, 3, 65–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreifke, M.B.; Jayasurya, A.A.; Ambalangodage, C.J. Current wound healing procedures and potential care. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 48, 651–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franca, C.M.; Anders, J.J.; Lanzafame, R.J. Photobiomodulation in wound healing: What are we not considering? Photomed. Laser Surg. 2016, 34, 51–52. [Google Scholar] [CrossRef] [PubMed]
- Nesi-Reis, V.; Lera-Nonose, D.S.S.L.; Oyama, J.; Paula Silva-Lalucci, M.P.; Demarchi, I.G.; Aristides, S.M.A.; Teixeira, J.J.V.; Silveira, T.G.V.; Lonardoni, M.V.C. Contribution of phodynamic therapy in wound healing: A systematic review. Photodiagn. Photodyn. Ther. 2018, 21, 294–305. [Google Scholar] [CrossRef]
- Etulain, J. Platelets in wound healing and regenerative medicine. Platelets 2018, 29, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Colciago, A.; Celotti, F.; Casati, L.; Giancola, R.; Castano, S.M.; Antonini, G.; Sacchi, M.C.; Negri-Cesi, P. In Vitro Effects of PDGF Isoforms (AA, BB, AB and CC) on Migration and Proliferation of SaOS-2 Osteoblasts and on Migration of Human Osteoblasts. Int. J. Biomed. Sci. 2009, 5, 380–389. [Google Scholar] [PubMed]
- Anitua, E.; Pino, A.; Orive, G. Plasma rich in growth factors promotes dermal fibroblast proliferation, migration and biosynthetic activity. J. Wound Care 2016, 25, 680–687. [Google Scholar] [CrossRef]
- Anitua, E. Plasma rich in growth factors: Preliminary results of use in the preparation of future sites for implants. Int. J. Oral Maxillofac. Implant. 1999, 14, 529–535. [Google Scholar]
- De Pascale, M.R.; Sommese, L.; Casamassimi, A.; Napoli, C. Platelet derivatives in regenerative medicine: An update. Transfus. Med. Rev. 2015, 29, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Hesseler, M.J.; Shyam, N. Platelet-rich plasma and its utility in medical dermatology: A systematic review. J. Am. Acad. Dermatol. 2019, 81, 834–846. [Google Scholar] [CrossRef] [Green Version]
- Lana, J.F.; Huber, S.B.; Purita, J.; Tambeli, C.H.; Santos, G.S.; Paulus, C.; Annichino-Bizzacchi, J.M. Leukocyte-rich PRP versus leukocyte-poor PRP-The role of monocyte/macrophage function in the healing cascade. J. Clin. Orthop. Trauma 2019, 10, S7–S12. [Google Scholar] [CrossRef]
- Drudi, L.; Ball, C.G.; Kirkpatrick, A.W.; Saary, J.; Grenon, S.M. Surgery in space: where are we at now? Acta. Astronaut. 2012, 79, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Davidson, J.M.; Aquino, A.M.; Woodward, S.C.; Wilfinger, W.W. Sustained microgravity reduces intrinsic wound healing and growth factor responses in rat. FASEB J. 1999, 13, 325–329. [Google Scholar] [CrossRef]
- Delp, M.D. Unraveling the complex web of impaired wound healing with mechanical unloading and physical deconditioning. J. Appl. Physiol. 2008, 104, 1262–1263. [Google Scholar] [CrossRef] [Green Version]
- Radek, K.A.; Baer Lisa, A.; Eckhardt, J.; DiPietro, L.A.; Wade, C.E. Mechanical unloading impairs keratinocyte migration and angiogenesis during cutaneous wound healing. J. Appl. Physiol. 2008, 104, 1295–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, M.R.; Williams, D.R.; Buckey, J.C.J.; Kirkpatrick, A.W. Animal surgery during spaceflight on the Neurolab Shuttle mission. Aviat. Space Environ. Med. 2005, 76, 589–593. [Google Scholar]
- Midura, R.J.; Su, X.; Androjna, C. A simulated weightlessness state diminishes cortical bone healing responses. J. Musculoskelet. Neuronal. Interact. 2006, 6, 327–328. [Google Scholar] [PubMed]
- Kirchen, M.E.; O’Connor, K.M.; Gruber, H.E.; Sweeney, J.R.; Fras, I.A.; Stover, S.J.; Sarmiento, A.; Marshall, G.J. Effects of microgravity on bone healing in a rat fibular osteotomy model. Clin. Orthop. Relat. Res. 1995, 318, 231–242. [Google Scholar]
- Infanger, M.; Kossmehl, P.; Shakibaei, M.; Bauer, J.; Kossmehl-Zorn, S.; Cogoli, A.; Curcio, F.; Oksche, A.; Wehland, M.; Kreutz, R.; et al. Simulated weightlessness changes the cytoskeleton and extracellular matrix proteins in papillary thyroid carcinoma cells. Cell Tissue Res. 2006, 324, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, J.; Bauer, J.; Egli, M.; Infanger, M.; Wise, P.; Ulbrich, C.; Grimm, D. The Effects of Weightlessness on the Human Organism and Mammalian Cells. Curr. Mol. Med. 2011, 11, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Morbidelli, L.; Monici, M.; Marziliano, N.; Cogoli, A.; Fusi, F.; Waltenberger, J.; Ziche, M. Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals. Biochem. Biophys. Res. Com. 2005, 334, 491–499. [Google Scholar] [CrossRef]
- Monici, M.; Fusi, F.; Paglierani, M.; Marziliano, N.; Cogoli, A.; Pratesi, R.; Bernabei, P.A. Modeled gravitational unloading triggers differentiation and apoptosis in preosteoclastic cells. J. Cell Biochem. 2006, 98, 65–80. [Google Scholar] [CrossRef]
- Monici, M.; Cialdai, F.; Romano, G.; Fusi, F.; Egli, M.; Pezzatini, S.; Morbidelli, L. An in Vitro Study on Tissue Repair: Impact of unloading on cells Involved in the remodelling phase. Microgravity Sci. Technol. 2011, 23, 391–401. [Google Scholar] [CrossRef]
- Cialdai, F.; Vignali, L.; Morbidelli, L.; Colciago, A.; Celotti, F.; Santi, A.; Caselli, A.; Cirri, P.; Monici, M. Modeled microgravity affects fibroblast function related to wound healing. Microgravity Sci. Technol. 2017, 29, 121–132. [Google Scholar] [CrossRef]
- Chung, C.Y.; Erickson, H.P. Glycosaminoglycans modulate fibronectin matrix assembly and are essential for matrix incorporation of tenascin-C. J. Cell Sci. 1997, 110, 1413–1419. [Google Scholar] [PubMed]
- Strollo, F.; Gentile, S.; Strollo, G.; Mambro, A.; Vernikos, J. Recent progress in Space Physiology and Aging. Front. Physiol. 2018, 9, 1551. [Google Scholar] [CrossRef] [Green Version]
- Strollo, F.; Macchi, C.; Eberini, I.; Masini, M.A.; Botta, M.; Vassilieva, G.; Nichiporuk, I.; Monici, M.; Santucci, D.; Celotti, F.; et al. Body composition and metabolic changes during a 520-day mission simulation to Mars. J. Endocrinol. Investig. 2018, 41, 1267–1273. [Google Scholar] [CrossRef] [Green Version]
- Neutelings, T.; Nusgens, B.V.; Liu, Y.; Tavella, S.; Ruggiu, A.; Cancedda, R.; Gabriel, M.; Colige, A.; Lambert, C. Skin physiology in microgravity: a 3-month stay aboard ISS induces dermal atrophy and affects cutaneous muscle and hair follicles cycling in mice. NPJ Microgravity 2015, 1, 15002. [Google Scholar] [CrossRef] [Green Version]
- Tettamanti, G.; Grimaldi, A.; Rinaldi, L.; Arnaboldi, F.; Congiu, T.; Valvassori, R.; de Eguileor, M. The multifunctional role of fibroblasts during wound healing in Hirudo medicinalis (Annelida, Hirudinea). Biol. Cell 2004, 96, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Tettamanti, G.; Grimaldi, A.; Congiu, T.; Perletti, G.; Raspanti, M.; Valvassori, R.; de Eguileor, M. Collagen reorganization in leech wound healing. Biol. Cell 2005, 97, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Lotz, R.G.; Baum, P.; Bowman, G.H.; Klein, K.D.; von Lohr, R.; Schrotter, L. Test of a life support system with Hirudo medicinalis in a sounding rocket. Life Sci. Space Res. 1972, 10, 133–143. [Google Scholar]
- Velnar, T.; Bailet, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Stojadinovic, O.K.A.; Golinko, M.; Tomic-Canic, M.; Brem, H. A novel, non-angiogenic mechanism of VEGF: Stimulation of keratinocyte and fibroblast migration. Wound Repair Regen. 2007, 15, A30. [Google Scholar]
- Bao, P.; Kodra, A.; Tomic-Canic, M.; Golinko, M.S.; Ehrlich, H.P.; Brem, H. The role of vascular endothelial growth factor in wound healing. J. Surg. Res. 2009, 153, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Almina, J.F.; Wise, S.G.; Weiss, A.S. Elastin signaling in wound repair. Birth Defects Res. (Part C) 2012, 96, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, A.; Banfi, S.; Bianchi, C.; Gabriella, G.; Tettamanti, G.; Noonan, D.M.; Valvassori, R.; de Eguileor, M. The leech: A novel invertebrate model for studying muscle regeneration and diseases. Curr. Pharm. Des. 2010, 16, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Heinemeier, K.M.; Olesen, J.L.; Haddad, F.; Schjerling, P.; Baldwin, K.M.; Kjaer, M. Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. J. Appl. Physiol. 2009, 106, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Provenzano, P.P.; Martinez, D.A.; Grindeland, R.E.; Dwyer, K.W.; Turner, J.; Vailas, A.C.; Vanderby, R., Jr. Hindlimb unloading alters ligament healing. J. Appl. Physiol. 2003, 94, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Martinez, D.A.; Vailas, A.C.; Vanderby, R.J.; Grindeland, R.E. Temporal extracellular matrix adaptations in ligament during wound healing and hindlimb unloading. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, 1552–1560. [Google Scholar] [CrossRef]
- Krüger, M.; Pietsch, J.; Bauer, J.; Kopp, S.; Carvalho, D.T.O.; Baatout, S.; Moreels, M.; Melnik, D.; Wehland, M.; Egli, M.; et al. Growth of Endothelial Cells in Space and in Simulated Microgravity—A Comparison on the Secretory Level. Cell Physiol. Biochem. 2019, 52, 1039–1060. [Google Scholar]
- Chen, Z.Y.; Guo, S.; Li, B.; Jiang, N.; Li, A.; Yan, H.F.; Yang, H.M.; Zhou, J.L.; Li, C.L.; Cui, Y. Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells. BioMed Res. Int. 2019, 2019, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aleshcheva, G.; Sahana, J.; Ma, X.; Hauslage, J.; Hemmersbach, R.; Egli, M.; Infanger, M.; Bauer, J.; Grimm, D. Changes in Morphology, Gene Expression and Protein Content in Chondrocytes Cultured on a Random Positioning Machine. PLoS ONE 2013, 8, e79057. [Google Scholar] [CrossRef] [Green Version]
- Casati, L.; Celotti, F.; Negri-Cesi, P.; Sacchi, M.; Castano, P.; Colciago, A. Platelet derived growth factor (PDGF) contained in Platelet Rich Plasma (PRP) stimulates migration of osteoblasts by reorganizing actin cytoskeleton. Cell Adhes. Migr. 2014, 8, 595–602. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Li, Y.; Wang, H.; Cai, M.; Gao, S.; Liu, J.; Tong, L.; Hu, Z.; Wang, Y.; Wang, K.; et al. MiR-181c-5p mediates simulated microgravity-induced impaired osteoblast proliferation by promoting cell cycle arrested in the G2 phase. J. Cell Mol. Med. 2019, 23, 3302–3316. [Google Scholar] [CrossRef] [PubMed]
- Cherng, S.; Young, J.; Ma, H. Alpha-Smooth Muscle Actin (α-SMA). J. Am. Sci. 2008, 4, 7–9. [Google Scholar]
- Park, S.; Bivona, B.J.; Harrison-Bernard, L.M. Compromised renal microvascular reactivity of angiotensin type 1 double null mice. Am. J. Physiol. Renal. Physiol. 2007, 293, F60–F67. [Google Scholar] [CrossRef] [Green Version]
- Kushida, S.; Kakudo, N.; Suzuki, K.; Kusumoto, K. Effects of Platelet-Rich Plasma on Proliferation and Myofibroblastic Differentiation in Human Dermal Fibroblasts. Ann. Plast. Surg. 2013, 71, 219–224. [Google Scholar] [CrossRef]
- Ahluwalia, A.; Tarnawski, A.S. Critical Role of Hypoxia Sensor—HIF-1alpha in VEGF Gene Activation. Implications for Angiogenesis and Tissue Injury Healing. Curr. Med. Chem. 2012, 19, 90–97. [Google Scholar] [CrossRef]
- Redd, M.J.; Cooper, L.; Wood, W.; Stramer, B.; Martin, P. Wound healing and inflammation: embryos reveal the way to perfect repair. Philos. Trans. R. Soc. B 2004, 359, 777–784. [Google Scholar] [CrossRef] [Green Version]
- Bani, D.; Nistri, S. New insights into the morphogenic role of stromal cells and their relevance for regenerative medicine. Lessons from the heart. J. Cell. Mol. Med. 2014, 18, 363–370. [Google Scholar] [CrossRef]
- Celotti, F.; Colciago, A.; Negri-Cesi, P.; Pravettoni, A.; Zaninetti, R.; Sacchi, M.C. Effect of platelet-rich plasma on migration and proliferation of SaOS-2 osteoblasts: Role of platelet-derived growth factor and transforming growth factor-beta. Wound Repair Regen. 2006, 14, 195–202. [Google Scholar] [CrossRef]
- Hammond, T.; Allen, P. The Bonn criteria: Minimal experimental parameter reporting for clinostat and random positioning machine experiments with cells and tissues. Microgravity Sci. Technol. 2011, 23, 271–275. [Google Scholar] [CrossRef]
- van Loon, J. Some history and use of the Random Positioning machine, RPM, in gravity related research. Adv. Space Res. 2007, 39, 1161–1165. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cialdai, F.; Colciago, A.; Pantalone, D.; Rizzo, A.M.; Zava, S.; Morbidelli, L.; Celotti, F.; Bani, D.; Monici, M. Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models. Int. J. Mol. Sci. 2020, 21, 407. https://doi.org/10.3390/ijms21020407
Cialdai F, Colciago A, Pantalone D, Rizzo AM, Zava S, Morbidelli L, Celotti F, Bani D, Monici M. Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models. International Journal of Molecular Sciences. 2020; 21(2):407. https://doi.org/10.3390/ijms21020407
Chicago/Turabian StyleCialdai, Francesca, Alessandra Colciago, Desiré Pantalone, Angela Maria Rizzo, Stefania Zava, Lucia Morbidelli, Fabio Celotti, Daniele Bani, and Monica Monici. 2020. "Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models" International Journal of Molecular Sciences 21, no. 2: 407. https://doi.org/10.3390/ijms21020407
APA StyleCialdai, F., Colciago, A., Pantalone, D., Rizzo, A. M., Zava, S., Morbidelli, L., Celotti, F., Bani, D., & Monici, M. (2020). Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models. International Journal of Molecular Sciences, 21(2), 407. https://doi.org/10.3390/ijms21020407